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Abstract

The activity tracker is implemented using the IEEE 802.15.4 ZigBee wireless standard
compliant MeshNetics MeshBean platform and their open source MAC layer imple-
mentation, OpenMAC, which uses the nesC programming language and TinyOS. The
hardware prototype assembled uses a 3-axis-accelerometer and on the software side
additional filters to detected the activity trackers state which will be transmitted via
ZigBee router to a base station for further processing.
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Chapter 1

Introduction

”The most profound technologies are those that disappear. They weave themselves
into the fabric of everyday life until they are indistinguishable from it”

Mark Weiser[17]

1.1 Motivation

The above statement was published by Mark Weiser[17] and has become the devise of
Pervasive Computing. If one counts the numbers of device that surround him and that
one does not recognize as computers anymore but more or less as long-term partners,
the disappearing has already started. Within this context the activity tracker could
be one of the key technologies that enable other devices to interact smartly within the
user digital aura, as proposed by [5], according to the activity tracker’s current state.
As a context-aware application the activity tracker could be the integrated into keyring
pendant and carried around just as we do it with our latchkey for everyday everywhere
use. Henceforth information collected by the activity tracker could be transmitted to
and used by many other devices that need specific information about their user to fulfil
their task ambient and properly. Imagine running to catch the bus and being disturbed
by the vibration-call function of the phone in the pocket. If a user will have the activity
tracker equipped, it would send the business of its user to the mobile phone, which in
turn could omit the vibration-call feature of the phone or the call itself and notify the
caller that you are in a hurry and a later call may be more appropriate.
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1.2 Task

The task was to create an embedded sensor node that is context-aware and collects in-
formation about the user and his behaviour. It was also required that it can recognise
its own state, cf. Figure 1.1, independently from a high level processing unit. The
activities we wanted to collect about the user are as follows: Idle, Sitting, Standing,
Walking, Stand up, Sit down. These basic states were found to be the lowest level
information that needed to be collected because higher level information, like having
a meeting, could be better observed from the outside. It was required to build the
application on top of MeshBeans OpenMAC, which is a open source MAC Layer imple-
mentation for ZigBee, the IEEE 802.15.4 wireless standard, on top of their hardware
platform using nesC, a network centric C like language, as the primary programming
language.

idle stand up

sit down

standing walking

sitting

1

Figure 1.1: States to be recognised

1.3 Solution

The OpenMAC implementation, was extended with the necessary requirements to read
data from the sensors and to send them wirelessly to a base station. There were filter
libraries designed to be easily ported to other TinyOS architectures easily and suit the
low-cpu requirements of an embedded system. A state machine was created to fulfil
the detection of the states with the values from the sensors and filters and output the
new computed state.
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The remaining chapters of this thesis are structured as follows. Chapter two contains
related work which was done on activity tracking over the last years. Conceptual Infor-
mation is described within the system architecture, chapter three. Afterwards chapter
four presents the filter information used and in general implementation details used in
the project. At last future work and conclusion round off the thesis and summarize the
whole work.
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Chapter 2

Related Work

Lukowicz [11] suggests and classifies the task for recognition in different subfields, cf.
Figure 2.1. Where every subfields is complex and essential for the next step. Errors
made in the early steps will increase the error and the uncertainty on each further
step. Its necessary to choose the right kind of sensors for different tasks with a special
focus on information gain and power needed which is a main focus of embedded system
designs. Within signal processing we have to choose the right sampling frequency,
according to the Nyquist–Shannon sampling theorem, and may be remove the noise
with a low pass filter as described in Section 4.3 and if necessary additional filters
for more information. After analysing the sensors signals its necessary to choose the
adequate features. Optionally pattern matching has to be applied to find reoccurring
sample cycles, however this is better suited to be computed on non-battery dependent
devices. At last higher level processing makes use of the collected data and uses the bits
and bytes collected to discover a more abstract kind of information or knowledge.

Figure 2.1: Recognition Chain[11]

In the following sections the evolution of activity tracking will be discussed in four
different project and three different approaches to solve the almost same task. However
there are other approaches, e.g to use either external sensors or motion detection in
videos for activity tracking, which are not covered within this paper.
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2.1 Sensor Badge

The Sensor Badge [4] describes how to distinguish between a set of predefined activities
using two accelerometers, one horizontal and the other one vertical. To differ between
sitting, standing, lying (up and down) Farringdon et al. examined they magnitude of
the acceleration (on the voltage level) and labelled the different amplitude levels to
the according states. While detecting walking and running they found out that that
the difference between those two states were the vertical amplitude and the horizontal
difference between maximum peak and minimum peak is almost the same. The average
of the values collected was similar to standing and the crossing of the average boundaries
was used to obtain a frequency also indicating if the user was walking or running. The
sensor badge finally outputed the detected state with labeled LEDs, cf. Figure 2.2, or
via serial communication for further processing.

(a) Prototype (b) Running Analysis

Figure 2.2: Sensor Badge[4]

2.2 OnHand PC

Randell and Muller [16] used a different approach to differ between an other set of ac-
tivities, which were walking ,running, sitting, upstairs, downstairs and standing. They
used feature extraction for creating input for neural network, cf. Figure 2.3, out of a
horizontal and vertical sensor and labelled the x/y values collected by the ADC with
the current activity and the integrated values over the last two seconds on an ground
truth of ten people.However with additional filtering the system used to recognise up
to 95% right although there were some problems regarding the height of landings when
walking up and downstairs and different clothing made the recognition task more com-
plicated. The accelerometer board was event-triggered and only outputs changes of
current state to the OnHand PC via serial communication.
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(a) Prototype (b) Neural Network

Figure 2.3: Activity Recognition with Neural Networks[16]

2.3 PDA and wearable sensors

Lee and Mase [10] used a bi-axial accelerometer, a gyroscope and a angular velocity
sensor, which were attached via serial communication to a PDA, cf. Figure 2.4, in
order to perceive the states sitting, walking (different speeds), upstairs, downstair and
standing. Using dead reckoning, an algorithm to estimate the position using time,
speed and walking heading, they did also do location recognition.

(a) Prototype (b) Walking Detection

Figure 2.4: Activity Recognition with Feature Extraction[10]

They used a feature vector with standard deviation of the accelerometer and the an-
gular velocity sensor as well as the last three angle differences, which were obtained
using integration between zero-crossings. For recognizing standing and sitting the ac-
celerometer uses the absolute gravitational acceleration if the unit wasn’t in motion.
Walking detection was done by a peak detection algorithm on the upward acceleration
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and the rule that the standard deviation of x/y and angular velocity. If more than two
of these values were bigger then the threshold then the systems checked the number of
zero-crossings on the angular velocity and if there were more than two crossings, the
systems tried to find the the angular differences and successfully detect a gait cycle of
human walking.

2.4 PowerSaver, Pocket-Worn Activity Tracker

Ferscha et al. [6] created a pocket-worn activity tracker, called the PowerSaver, which
detects sitting,standing and walking with an accuracy of 80−90% when worn on the hip.
The PowerSaver is an ambient device to enable energy efficient computing, hence the
name. It interacts with ”Control Units” which are connected to any kind of electronic
device and set them to a power saving state or shut them down completely. This
interaction is done wireless and requires no interaction from the user. The prototype
setup developed so far behaves smartly and adjust the light to the PowerSaver’s current
context, e.g. fading light when walking away.

2.5 Comparison

Four projects have been introduced to detect user behaviour, however comparison will
focus on the first 3 projects since the limited information regarding the PowerSaver.
The first two projects both have the disadvantage of serial wired communication for
transmission of users state to other devices, the third one, on the other hand, can
use the Bluetooth or Infrared wired communication of the PDA. With exception of
the first and last project all projects use a lot of computational power and implicit
battery power. The activity tracker resolves these issues it uses the low power wireless
communication which comes through ZigBee to provide information for context-aware
applications and multiple devices. Also the computational requirements of the activity
tracker are better than those of the last two projects. Finally the small design will
encourage the typical user to use it everyday. These advantages of the activity tracker
fit the requirements and specification of a pervasive system better than the first three
introduced related projects.
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Chapter 3

System Architecture

The system architecture will be explained within this chapter for better understanding
of the bigger picture. Within the first section the relations between the technologies and
the hardware used will be explained. Followed by an introduction to the ZigBee wireless
standard and platform which is the key technology and upcoming de facto standard
used for wireless sensor networks. Afterwards a brief tutorial to concepts of nesC and
TinyOS will be given. Finally the choosing of the Meshnetics MeshBean development
platform and their OpenMAC suite will be reasoned.

3.1 The Architecture

Node

State Detection

Gumstix Router
State Changes

ZigBee/Wireless Domain OSGi/Wired Domain

Presence

Activity Statistics

Server
Information

1

Figure 3.1: Architecture Overview

The architecture consists of the three parts so far. The sensor node, cf. Figure 3.2,
were used for collecting information about the environment with a 3-axis-accelerometer
and a temperature sensor which it used for state detection. In the final version only
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state changes are transmitted, but currently for easier development the node sends its
raw data with the detected state to the MeshBean developement board which writes
the incoming data to the serial interface of the PC which it is attached to. However its
also possible to attach the sensor node to the PC directly and access its data. On the
PC, a Java application reads the data from the serial interface, performs some sanity
tests on the values which are used to avoid transmission errors. Afterwards the values
are processed by the same filters like on the end device and put into the state machine.
When the filtering and state detection is done the application writes all values to the
console as well as to a log file which can be used for visualisation using gnuplot, a
GNU/Linux plotting tool.

Figure 3.2: sensor size comparison

The target architecture is more complex. The sensor or a lot of sensors exist(s) in
a smart living environment where they hop through different network zones and at-
tach/detach to different routers so the next best router has to take care of the activity
beacons the sensor nodes transmit as well as detecting statistics and presence informa-
tion about the motes. This information can be routed directly or indirectly over other
routers to a base station where the information enters the OSGi/Java Domain which
is the key interface to a more higher level processing domain.

3.2 MeshNetics OpenMAC

It was required, cf. Section 1.2 to build the system on the MeshBean platforms[12]
which is one of the first and also open IEEE 802.15.4, MAC Layer implementation with
TinyOS support which is an excellent choice for building low power devices with the
quality of service level only a MAC layer provides. However setting up the toolchain
isn’t straight forward and will be explained later, cf. Section 4.5. The development kit
boards, cf. Figure 3.3, are good starting points for developing own applications and is
used in our system as a ZigBee Router, Coordinator and a interface to the PC. Jürgen
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Erhart assembled the prototype of the sensor node which is displayed Figure 3.3 b and
c.

(a) MeshBean P latform (b) node top view (c) node down view

Figure 3.3: Meshnetics MeshBean DevelopmentBoard[12] and Sensor Node

3.3 ZigBee Wireless Standard

There are many wireless standards, cf. Figure 3.4, used so far which all have their
special application domain. Within this wireless space the new standard ZigBee [8, 1],
which is spaced on the the IEEE 802.15.4 Radio Layer Specification[9], is a unique
approach for communication between low power devices with low data rate, enforced
by the ZigBee Alliance which is a collaboration effort between many hardware vendors.
There are two types of devices within the ZigBee standard, Reduced Function Devices
(RFD) and Full Function Devices (FFD). Reduced Function Devices can be seen as
battery powered low-power devices which collect information about their surrounding
optionally do some processing and send them to a Full Function Device which can be
used to route the information to a base station, either directly or indirectly over other
FFDs. This aspects of indirect routing is used to form ZigBee networks with different
kind of topology although the idea of ZigBee networking suggests mesh topology which
may consist within itself also as star/tree/mesh networks. Within a mesh network
many connection a redundant so if a router fails another one takes over the job and the
packages are sent to the network coordinator with the fastest speed.

Since ZigBee is a network protocol its necessary to identify devices, therefore the IEEE
Standard applies a 64 Bit IEEE address, which is globally unique, and a 16 bit address
which makes it possible to have 65.535 nodes within a network. With that amount of
devices its necessary for ZigBee routers to have power from the grid as well as more
RAM than RFD devices for their routing/transmitting abilities. The ZigBee MAC
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Layer with its rather small size of 104 Bytes maximum payload provides the necessary
methods to speak over the shared wireless channel.

Figure 3.4: Placement of the ZigBee Standard within the IEEE Wireless Space[8]

3.4 nesC

nesC [7] is an programming language designed for network embedded systems which
extends the C programming language, which is required for low level access to micro-
controllers, with safety, simplicity, optimisation and program-analysis. nesC discour-
ages dynamic allocation which helps to provide more accurate information about run-
time requirements and problems, such as race conditions or needed memory. The use
and providing of interfaces and the component model addresses the needs for dynamic
allocation.

The component model is one of the basic and sophisticated feature of nesC . Its about
using and providing interface which are access point to the functionality of a component.
With this design pattern its possible to provide common standardized access to different
hardware specific platforms or devices.

3.5 TinyOS

TinyOS [7] is an operating system designed for the needs of network embedded sys-
tems and goes hand in hand with the nesC programming language in which it was
implemented. It’s build up on three concepts: Component-based architecture, which
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was already explained above; Tasks and event-based concurrency; Split-Phase Opera-
tion.

Concurrency is implemented via tasks and event. Tasks are a non time critical com-
putation mechanism which is used to defer some code execution when the operating
systems thinks its appropriate. Events are highly preemptive and are commonly used
to signal the end of a task which is used in split-phase operation.

Split-Phase operation, splitting up the request and the execution of a function, is an-
other core feature of TinyOS which is necessary because of the non-preemptive way
of tasks. Its necessary to introduce non-blocking operations which have to include
at least two parts to allow split-phase operation within an interface. The request of
such a operation is classified via the command keyword and for completion an event is
signaled.
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Chapter 4

Activity Tracker

The software part of the activity tracker was built around the MeshBean development
platform and OpenMAC, cf. Section 3.2. In this chapter the used filter will be explained
as well as the state machine which was build to map the features computed by the filter
bank to an appropriate and correct state. The concepts of nesC will be shown on the
example of a filter implementation and the integration of the presented parts into
the activity tracker system. Finally the recommended setup of the tool-chain will be
shown.

Prerequisites

For the first development stages MeshBean development platform and Debian
GNU/Linux on the PC counterpart were used. For setting up the serial communi-
cation the program cKermit was used to negotiate the transfer parameters between
the PC and one of the development boards, which functioned as the receiver and was
attached via USB. Afterwards for rapid development Java was used to build and test
different filter and to create the state machine. Those Java classes were then ported to
nesC which extensive use of the concepts of TinyOS .

4.1 Sensing & Filtering

The 3-axis accelerometer, is aligned with its z axis on the vertical plane, is loaded
by gravity, and x and y are on the horizontal plane. The accelerometer outputs values
between zero and 1023 and the arithmetic mean, 512, is the standard value and indicates
that zero pressure is on the axis. When the sensor node is standing on the side, cf.
Figure 4.1, z and x axis switch to the horizontal plane and y gets loaded by the gravity
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force. These changes can be analysed to detected the alignment of the sensor in order
to separate standing from sitting.

Figure 4.1: sensor axis alignment when standing

After analysing the raw signal of the sensor which samples every 80 ms, a human can
match what the user was doing however if he observed what the user was doing. Learn-
ing a computer this recognition task proves more complicated. Figure 4.2 shows the
sensor in different modes as follows: idle, sitting, standup, standing, walking, standing,
sitdown, sitting and idle before a low pass filter which is explained in 4.1.1. For better
detection algorithm two kinds of filters were implemented which were proven to be quite
useful in the recognition process, a maximal filter (cf. Section 4.1.2) and a slope filter
(cf. Section 4.1.3).

Figure 4.2: raw sensor signal when doing the testcycle1

1testcycle states: idle, sitting, standup, standing, walking, standing, sitdown, sitting and idle
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4.1.1 Low Pass Filtering

Dorr [3] implemented a simple digital low-pass filter which works like an analog RC
filter and suits the limitations of an embedded system. Its needed to remove the noise
from the raw signal, cf. Figure 4.2, . In Equation (4.1) the mathematical relation
between the incoming value v(n) and the scaled output value low(n) is shown and
Listing 4.1 displays the equivalent C code.

low(n) = (1− 2−k) ∗ low(n− 1) + v(n) (4.1)

Since the timer of the sensor fires every 80[ms] the sample frequency is 12, 5[Hz] there-
fore it takes 1,28 samples to change the output of the low pass filter from zero to one.
This delay was found out to be sufficient to remove the noise from the raw sensor
value.

1 r e g i s t e r = r e g i s t e r − ( r e g i s t e r >> k ) + v ;

2 low = r e g i s t e r >> k ;

Listing 4.1: C-Code for Low Pass Filter

Figure 4.3: signal after applying the low-pass to the testcycle1

In the following parts the low pass filtered value will be named the raw value for
simplicity.

1testcycle states: idle, sitting, standup, standing, walking, standing, sitdown, sitting and idle
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4.1.2 Maximal Filter

Since the 3-axis-accelerometer measures values between zero and 1023 value the arith-
metic mean, 512, is used to calculate the value of the deviation. These values are even
more separated by multiplication with 30. This was found to be necessary because
otherwise it would have not been possible to separate pocketing of the sensor, vertical
and horizontal alignment that easily.

max(n) = max
|v(x)−512|∗30

| n− win ≤ x ≤ n (4.2)

In Figure 4.4 the raw and the max signal are displayed. Significantly only one max-
filtered signal is highest which is the axis which is heavily load with gravity. Hence
recognition in which position the sensor is possible, so either horizontal or vertical
aligned. Also their are small staircases which could be used for estimated step calcula-
tions while walking.

Figure 4.4: signal after applying max-filter to the testcycle1

The input values of the maximal filter are also used to calculate the difference between
the oldest and the newest incoming value. This is mainly used for detection of stand
up and sit down where the fast changes of the gravity load create a high amplitude.

1testcycle states: idle, sitting, standup, standing, walking, standing, sitdown, sitting and idle
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4.1.3 Slope Filter

A slope filter is used to calculated the gradient over a specified window size. Figure
4.5 shows the applied slope filter, while the amplitude noise while idling is relative
small compared to stand up, walking and sit down, cf. Figure 4.5 annotations,. The
slope filter is mainly used to separate standing from walking. The formula used for
slope filtering would be quite CPU intensive however only sums with dependency on
the incoming value have to be computed every time.

slope(n) =
win ∗

∑n
x=s (x ∗ v(x))−

∑n
x=s x ∗

∑n
x=s v(x)

win ∗
∑n

x=s x
2 − (

∑n
i=s x)2

∗ 100 | s = n− win (4.3)

Figure 4.5: signal after applying slope-filter to the testcycle1

4.2 The state machine

A transducer finite-state machine, cf. Figure 4.6, was created to fulfil the requirements
of activity detection. Detection starts with try idle and if the condition is fulfilled it
changes the output state to idle, as explained in paragraph validations transition , if
that is not the case it will try the next possible state, cf. indicator transitions on the
next incoming values, e.g. in stand up either sitting or standing. This applies to all

1testcycle states: idle, sitting, standup, standing, walking, standing, sitdown, sitting and idle
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states so basically it would be possible that the detected activities never change however
tests have shown that this is not the case in any environmental setup.

try idle try standup

try sitdown

try standing try walking

try sitting

α/∅

β/∅

λ/∅

λ/∅

λ/∅

λ/∅
λ/∅

γ/∅

δ/∅ǫ/∅

λ/∅

Γ/idle

∆/sitting Θ/sitdown

Ξ/walkingΥ/standing

Φ/standup

1

Figure 4.6: transducer finite-state machine for the activity tracker

For simplicity following nomenclature will be used axisfilter where axis is the x/y/z-
axis used and filter the raw/max/slope-filter applied. Also the acceleration of gravity
g will be redefined in equation 4.4 to the value inflicted, which was measured, on the
max filter.

g = 9.81m/s2 ≈ 3100max (4.4)

Validations Transition

The following transitions, cf. Figure 4.6, are validation transitions which means the
currently ”try” state will be evaluated by these conditions and if fulfilled trigger the
transition and the according output. If this is not the case the indicator transition will
be tried.

• Γ/idle if the raw values are within a deviation of 20 around 515 for xraw, yraw

and 615 for the gravity burdened zraw axis.

• ∆/sitting unlike idle in sitting the sensor is not perfectly parallel to the ground
so the max value of the gravity axis, zmax, has to be less than normal but more
than 1

2 · g and either xmax and ymax above 1
5 · g since the load of the gravity is

distributed on one of these axis.

• Ξ/walking if xslope,yslope or zslope is above 150 or below -150, which are the
observed lower boundaries for different persons walking behaviour, and xmax or
ymax are loaded with more than 2

3 · g, because on of those axis is loaded with
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gravity force, and the difference, between the first and last value, on the xmax

axis is lower than 1
4 · g.

• Υ/standing is similar to walking xmax or ymax have to be loaded with 2
3 · g

but xslope,yslope and zslope should be in between of the lower walking behaviour
boundaries.

• Φ/standup if xmax or ymax have to be more than 1
3 · g, which is the indicator of

the beginning gravity force shift towards standing, the gain on zmax has to be
more than 1

4 · g and the last detected state has to be either sitting or standup

• Θ/sitdown if zmax is loaded with more than 1
3 · g, beginning back shift to normal

gravity burden on the z axis, and zmax raise is more than 1
4 · g.

Indicator Transitions

Basically the following transitions, cf. Figure 4.6, except the last one are indicator
transitions which means that according to the most common fulfilled conditions of the
following try state they are validated.

• α/∅ if xmax or ymax exceeds more than 2
3 · g. Indication ⇒ standing.

• β/∅ if the gain on zmax is more than 1
4 · g. Indication ⇒ sitting down.

• γ/∅ if xmax and ymax fall below 1
6 · g. Indication ⇒ idling.

• δ/∅ if zmax is greater than 2
3 ·g and the rise on zmax is bigger than 1

4 ·g Indication
⇒ sitdown.

• ε/∅ if xmax or ymax are greater than 2
3 · g. Indication ⇒ standing.

• λ/∅ if any other transition is possible

Example

In Figure 4.7 a labelled example shows the most significant curves and the state of
the sensor and the state calculated by the computer. The first down on yslope is the
pocketing of the sensor followed by the stand up (annotated sitdown) which is detected
successfully by both machines. However when switching from stand up to standing the
pc makes an error which is possibly caused by an error during transmission. These
errors occur also sometimes while walking but they do not change the overall trend
of the activity detection. During the switching from standing to sit down (around
y = 39650, annotated sitdown) a error occurs which is caused by the rising edge which
suggests the user is walking again however because of the rising of the zmax, which is
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caused by rising acceleration of gravity back on zmax, it is then detected that the user
is sitting down again.

Figure 4.7: activity labelled example with selected curves for easier viewing

4.3 System implementation & integration

Every time the timer fires within the sensor node also called transmitter the ADC con-
version of all axis, temperature and battery level starts, cf. Figure 4.8, . Additionally,
the callback function of the ADC also applies the low pass filter. Afterwards the filter-
bank will be called with new computed values which is integrated in the TinyOS part of
the OpenMAC software stack, cf. Listing 4.2. Subsequently the state-machine is called
with the raw and filtered values. When the new state is computed the out(put) event
is signaled and the state updated. Finally sendPacket will pack and ship the activity
beacon, cf. Figure 4.9, to the transmitter. Packaging is needed because of the 8 Bit
fragmentation of the OpenMAC stack packages.

1 openmac−1 .4 .1 .1/ s r c / Stack /development/ tos / system

2 i n t e r f a c e s / MaxFilter . nc

3 i n t e r f a c e s / S l o p e F i l t e r . nc

4 i n t e r f a c e s / StateMachine . nc

5 StateMachineC . nc

6 S lopeF i l t e rC . nc

7 MaxFilterC . nc

Listing 4.2: filter-bank integrated within the OpenMAC software stack
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receiver

transmitter

timerFired ADC conversion

call MaxFilter

call SlopeFilter

filter

filter

in

xmax, ymax, zmax

xdiff , ydiff , zdiff

xslope, yslope, zslope

call StateMachine

last

last

last

sendPacket

xraw, yraw, zraw

frameReceiveDone timerFired UARTsend

State

out

1

Figure 4.8: Program flow, red = signaled events, blue = used variables, green = called
commands

Receiver

When a package is received on the other side the function frameReceivedDone is executed the
package is unpacked and within timerFired the line for serial communication output is
built and outputted via the function UARTSend. The received signal strength indicator,
RSSI, which is a parameter of the frameReceivedDone is also appended to the UART output
and could be used for quality of service when routing as well as sensor location detection
using the (WLAN-)fingerprinting technique. The serial output contains the values as
follows seperated via semicolon. count, zraw, yraw, xraw, temperature, battery, state
and RSSI value. The Java Program reads the input and performs filtering and outputs
battery, count, zraw, yraw ,xraw ,temperature, battery, zslope, yslope, xslope, zmax, ymax,
xmax, zdiff , ydiff , xdiff , PCstate and state which can then be used to be visualized
with various gnuplot commands, cf. Appendix B.

Activity package
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zraw
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yraw

31

zraw

47

count
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battery
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1

Figure 4.9: Activity Package/Beacon
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The package, cf. Figure 4.9, consists of 102 Bits at the moment and can be extended
with a more information if necessary however it should not exceed the specification
of 102 Bytes. The raw sensor values of all axes, the temperature, battery level, the
computed state and a counter are transported from the sensor to the base station.
The package counter indicates when the frame was sent and will be used for routing
purposes to omit broadcast cycles when being in a multi-router environment.

4.4 Hands-on experience with nesC

As nesC extends the normal C code in the following it will be explained how to use some
of the advanced feature of nesC on the example of the slope filter implementation.

1 interface S l o p e F i l t e r {
2 command resu lt t i n i t ( ) ;

3 command resu lt t f i l t e r ( uint16 t value ) ;

4 async event resu l t t l a s t ( int16 t s l ope ) ;

5 }

Listing 4.3: nesC interface for SlopeFilter

In Listing 4.3 the interface to the slope filter is shown. Its also the default interface
for any filter and needed to interact with the filter implementation, cf. Listing 4.4 .
The implementation provides us with a array implementation of slope interfaces which
can be referenced with a given id. Within the main application configuration file, cf.
Listing 4.5 the ids are matched to symbolic names in order to be used them in the
application. Hence its not necessary to use the id on the function calls but the symbolic
name does that accordingly. call SlopeX. filter ( filter .rawX); actually would be matched to
SlopeFilterC. filter [1]( filter .rawX); internally. The implementation uses mainly arrays e.g. for
the incoming values which have to be stored according to the id, SLOPEAXIS, and the
window size.
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1 module S lopeF i l t e rC {
2 provides interface S l o p e F i l t e r [ uint8 t id ] ;

3 }
4 implementation{
5 enum {
6 SLOPEWINSIZE = 7 ,

7 SLOPEAXIS = 3 ,

8 } ;

9 . . .

10 uint16 t ys [SLOPEAXIS ] [ SLOPEWINSIZE ] ;

11 . . .

12 command resu lt t S l o p e F i l t e r . i n i t [ uint8 t id ] ( ) {
13 . . .

14 return SUCCESS;

15 }
16 command resu lt t S l o p e F i l t e r . f i l t e r [ uint8 t id ] ( uint16 t value ){
17 . . .

18 return SUCCESS;

19 }
20 default async event resu l t t S l o p e F i l t e r . l a s t [ uint8 t id ] ( int16 t s l ope ){
21 return FAIL ;

22 }
23 }

Listing 4.4: nesC Implementation for SlopeFilter

1 configuration transmitterC{
2 }
3 implementation{
4 components transmitterM , . . . , S l opeF i l t e rC ;

5 . . .

6 transmitterM . SlopeZ −> S lopeF i l t e rC . S l o p e F i l t e r [ 0 ] ;

7 transmitterM . SlopeX −> S lopeF i l t e rC . S l o p e F i l t e r [ 1 ] ;

8 transmitterM . SlopeY −> S lopeF i l t e rC . S l o p e F i l t e r [ 2 ] ;

9 . . .

10 }

Listing 4.5: nesC Binding for SlopeFilter

In Listing 4.4 , the default handler for event functions which will handle unused events,
failing is the standard way to be used. The main application implements a non-default
handler, which will be called when the filter function is done, that will return success.
This feature is necessary for programmer to recognize errors in his code.

1 async event resu l t t SlopeX . l a s t ( int16 t s l ope ){
2 atomic{
3 f i l t e r . slopeX=s lope ;

4 }
5 return SUCCESS;

6 }

4.5 Environment Setup

Setting up the environment for nesC and OpenMAC can be quite problematic and
will be explained briefly. First getting the CDK-AVR[2] kit which provides a working
cross-development platform compiler which has to be used to (re-)compile Meshnetics
OpenMAC stack as well as gcc-3.4, is mandatory. Then it is necessary to install the
nesC compiler with applied patches from Meshnetics which is included in a the file
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nesc−1.1−1.2.15 lux.i386.rpm within the OpenMAC suite. It should be extracted to a directory
/path/to/ without the usr folder. It’s not recommended to install it system-wide because
it will conflict with the normal TinyOS suite.

1 export CC=gcc−3.4

2 export PATH=’/path/ to / local / :/ opt/ cdk4avr / bin /

3 : / usr / bin / :/ bin : / usr / local /bin ’

Listing 4.6: path variables to be set

Since our sensorboard is able to use four ADC converters we need to define the gpio
pin name for the 4th ADC, cf. Listing 4.6

1 /path/ to /openmac−1 .4 .1 .1/ s r c /HAL/HAL R5/ base / inc lude / gpio . h

2 #de f i n e GPIO ADC INPUT 4 26 //ADC INPUT 4 pin name

Listing 4.7: enable 4th ADC on sensor board

After setup of the environmental variables, cf. Listing 4.6 , and a small adjustment to
the Makefile, cf. Listing 4.8 , you should have a fully functional development environ-
ment.

1 WSN PATH = /path/ to /openmac−1 .4 .1 .1/ s r c

Listing 4.8: Makefile Path Changement
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Chapter 5

Future Work & Conclusion

What has to be done is to get routing fully functional and build the suited environment
around the activity tracker to see it working while changing routers according to the
signal strength and to create the wrapper around the router to send the messages
as proposed in Section 3.1. It’s also necessary to create an application in which the
contextual information of the activity tracker can be used to fulfil more higher level
goals then tracking. In the following a few example applications are described.

5.1 Example Scenarios

One of the most interesting features is the low power collective communication within
a sensor network. An example application would be a user with the proposed activity
tracker on his keyring and a ZigBee interface on the mobile phone. So if one of the
devices leaves the home sensor network it could give and alarm to inform the user that
he left his mobile phone at home or turn off all the lights, left on, in the house as
proposed by Ferscha et al. [6].

Another scenario would be to extend the activity tracker with gesture detection. Using
a button to switch between these two modes a user could use the device to operate the
nearest enhanced ZigBee device, e.g. a HiFi-station or Media Center PC.

A third application could also be tracking of (elderly) patients with walking problems
which equip the sensor and a cell phone with a ZigBee module so if the sensor detects
that its wearer is falling down. It could tell the mobile phone to send a emergency
call. This setup could also be used in hospital which could integrate a wireless sensor
network for monitoring their patients.
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5.2 Conlusion

The task was to create software for ZigBee powered device to fulfil basic recognition for
activity tracking. Four projects were presented which feature state of the art technolo-
gies and hardware to fulfil a similar task. My project was to use the MeshBean Platform
and the OpenMAC software stack to complete this task, additional it was required to
create software using the nesC programming language and TinyOS. After getting the
ADC working and the transmission of packets working to speed up development Java
was used and to develop the necessary tools which were then reimplemented in nesC .
Three filters, namely a low pass, slope and a maximal filter and a transducer finite-
state machine that can conclude using the raw and filtered values the state in which
the activity tracker is in, were created and tested to function properly and suit the
requirements of an embedded system. Finally three sample applications were proposed
that would suit the activity tracker.
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Appendix A

SlopeFilter Implementation

Full source for the SlopeFilterC.nc

1 module S lopeF i l t e rC {
2 provides interface S l o p e F i l t e r [ uint8 t id ] ;

3 }
4 implementation{
5 enum {
6 SLOPEWINSIZE = 7 ,

7 SLOPEAXIS = 3 ,

8 } ;

9 uint32 t sumxy ;

10 uint16 t sumxx ;

11 uint16 t sumx ;

12 bool once ;

13 uint32 t sumy [SLOPEAXIS ] ;

14 uint16 t ys [SLOPEAXIS ] [ SLOPEWINSIZE ] ;

15 int32 t tmp ;

16 int16 t d i v i s o r ;

17 command resu lt t S l o p e F i l t e r . i n i t [ uint8 t id ] ( ) {
18 atomic{
19 uint8 t i , x ;

20 i f ( ! once ){
21 sumxy = 0 ;

22 sumx = ((SLOPEWINSIZE − 1) ∗ SLOPEWINSIZE) / 2 ;

23 f o r ( i = 0 ; i < SLOPEWINSIZE; i++) {
24 sumxx += i ∗ i ;

25 }
26 d i v i s o r=SLOPEWINSIZE ∗ sumxx ;

27 d iv i s o r−= sumx ∗ sumx ;

28 once=TRUE;

29 }
30

31 f o r ( i = 0 ; i < SLOPEWINSIZE; i++) {
32 ys [ id ] [ i ] = 0 ;

33 }
34 }
35 return SUCCESS;

36 }
37

38 command resu lt t S l o p e F i l t e r . f i l t e r [ uint8 t id ] ( uint16 t value ){
39 uint8 t i ;

40 sumy [ id ] −= ys [ id ] [ 0 ] ;

41 sumy [ id ] += value ;

42 f o r ( i = 0 ; i < SLOPEWINSIZE − 1 ; i++) {
43 ys [ id ] [ i ] = ys [ id ] [ i + 1 ] ;

44 }
45 ys [ id ] [ SLOPEWINSIZE − 1 ] = value ;

46 atomic{
47 sumxy = 0 ;

48 f o r ( i = 0 ; i < SLOPEWINSIZE; i++) {
49 sumxy += i ∗ ys [ id ] [ i ] ;

50 }
51 tmp=SLOPEWINSIZE ∗ sumxy ;

52 tmp−= sumy [ id ] ∗ sumx ;
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53 tmp∗=100;

54 s i g n a l S l o p e F i l t e r . l a s t [ id ] ( tmp/ d i v i s o r ) ;

55 }
56 return SUCCESS;

57 }
58

59 default async event resu l t t S l o p e F i l t e r . l a s t [ uint8 t id ] ( int16 t s l ope )

60 {return FAIL;}
61 }
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Appendix B

Gnuplot Visualisation

Various Gnuplot Commandos for viewing the log files
1 885 39537 536 417 527 764 885 203 253 −225 720 3390 870 390 420 240 1000 1000

2 962 39538 548 416 524 765 962 446 339 −289 1080 3390 870 840 480 510 1000 1000

3 937 39539 551 416 519 766 937 589 335 −282 1170 3390 750 960 480 540 800 800

4 896 39540 549 417 523 764 896 585 285 −210 1170 3390 690 900 540 360 800 800

5 964 39541 546 414 521 765 964 442 128 −139 1170 3210 540 630 270 270 800 800

6 772 39543 534 417 527 764 772 160 35 −25 1170 3000 450 240 150 60 800 600

7 775 39545 531 408 536 764 775 −171 −96 125 1170 3120 720 150 270 270 1000 1000

8 771 39546 525 405 531 764 771 −442 −175 210 1170 3210 720 690 330 210 1000 1000

9 938 39547 522 405 529 766 938 −535 −225 217 1170 3210 720 870 330 300 1000 1000

10 911 39549 527 428 525 764 911 −439 10 92 1110 3210 720 660 330 60 1000 1000

Listing B.1: Logfile sample

1 p lo t ’ l o gg e r . txt ’ us ing 2 :8 with l i n e s t i t l e ’ s lopez ’ ,\
2 ’ l o gge r . txt ’ us ing 2 :9 with l i n e s t i t l e ’ s lopey ’ ,\
3 ’ l o gge r . txt ’ us ing 2 :10 with l i n e s t i t l e ’ s lopex ’ ,\
4 ’ l o gge r . txt ’ us ing 2 :11 with po int s t i t l e ’maxz ’ ,\
5 ’ l o gge r . txt ’ us ing 2 :12 with po int s t i t l e ’maxy ’ ,\
6 ’ l o gge r . txt ’ us ing 2 :13 with po int s t i t l e ’maxx ’ ,\
7 ’ l o gge r . txt ’ us ing 2 :14 with l i n e s t i t l e ’ d i f f z ’ ,\
8 ’ l o gge r . txt ’ us ing 2 :15 with l i n e s t i t l e ’ d i f f x ’ ,\
9 ’ l o gge r . txt ’ us ing 2 :16 with l i n e s t i t l e ’ d i f f y ’ ,\

10 ’ l o gge r . txt ’ us ing 2 :17 with l i n e s t i t l e ’ pcstate ’ ,\
11 ’ l o gge r . txt ’ us ing 2 :18 with l i n e s t i t l e ’ s tate ’

Listing B.2: full filtered commando

1 p lo t 0 n o t i t l e l s 1 , 200 n o t i t l e l s 2 , 400 n o t i t l e l s 1 ,\
2 600 n o t i t l e l s 2 , 800 n o t i t l e l s 1 , 1000 n o t i t l e l s 2 ,\
3 ’ l o gg e r . txt ’ us ing 2 :8 with l i n e s t i t l e ’ s lopez ’ ,\
4 ’ l o gg e r . txt ’ us ing 2 :9 with l i n e s t i t l e ’ s lopey ’ ,\
5 ’ l o gg e r . txt ’ us ing 2 :11 with l i n e s t i t l e ’maxz ’ ,\
6 ’ l o gg e r . txt ’ us ing 2 :17 with l i n e s t i t l e ’ pcstate ’ ,\
7 ’ l o gg e r . txt ’ us ing 2 :18 with l i n e s t i t l e ’ s tate ’

Listing B.3: Visualisation used in example section
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