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Zusammenfassung

Mit der steigenden Anzahl an Sensoren in unserem Umwelt steigt der Wunsch diese

Sensoren wiederzuverwenden. Traditionelle Verfahren, welche mehrere Sensoren ver-

wenden und deren Daten kombinieren, sind dazu aber nicht in der Lage, weil die typ-

ischerweise verwendete statische Konfiguration dies nicht zulässt. Ein Sensor-System,

welches diese Limitierung überwinden möchte, muss aus Sensoren bestehen, welche

ihre eigenen Fähigkeiten vermitteln können und sich über die Fähigkeiten (bei / an/

über) anderen Sensoren informieren können. Dadurch wird es möglich, dass Sensoren

ein gemeinsames Ziel, wie das Erkennen von Bewegungsaktivitäten, erreichen können,

indem sie sich zusammenschließen und ihre Fähigkeiten kombinieren.

Diese Arbeit beschreibt ein durch ein Sensorziel initiiertes Aktivitätserkennungsver-

fahren, welches sich auf die Verwendung von mehreren Sensoren stützt und wie dieses

Verfahren auf einem eingebetteten System implementiert ist. Weiters wird erklärt

und festgehalten wie Selbst-Organisation, Selbst-Management und Selbst-Adaption in

diesem Verfahren dazu beitragen und dazu führen, dass das Sensor-System in der Lage

ist, vorhandene Sensoren bestmöglich wiederzuverwenden, effizient Daten zu sammeln

und zu transportieren, die Datenverarbeitungkapazitäten der Sensoren nutzt und das

Sensor-System gegen spontan auftretende Fehler in, und Ausfällen von, einzelnen Sen-

soren schützt, ohne dabei die Aktivitätserkennung zu unterbrechen.

Die Implementierung dieses Verfahrens wurde im Framework DarSens realisiert, welches

in der Lage ist Aktivitätserkennung auf einen von Menschen getragenen Sensor System

durchzuführen, während die Klassifizierung und Feature Extraktion auf den einzelnen

Sensoren durchgeführt wird, ohne dabei auf die Datenverarbeitungsfähigkeiten eines

Anwendungsgerät zurückzugreifen zu müssen. Es wurden drei Experimente durchge-

führt, welche die Machbarkeit des Verfahrens bestätigen und das Laufzeitverhalten des

Systems in typischen Aktivitätserkennungsszenarien untersuchen.
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Abstract

As the amount of sensors in our environment grows, it is feasible to reuse existing

sensors. Traditional multi-sensor fusion strategies in place in todays sensor systems are

not capable for this as they use a static configuration which cannot be reused. In order

to create a sensor system which can overcome this limitation, it is essential that a sensor

node can convey its capabilities and inquiry about other sensor node’s capabilities. In

turn, sensor nodes can then cooperate to achieve a common sensing goal by combining

their capabilities and e.g. recognize locomotion activities.

This work describes the sensing goal initiated multi-sensor activity recognition approach

and how it is implemented on an embedded system platform. As well as how mecha-

nisms of self-organization, self-management and self-adaptation are incorporated in the

approach, and the implementation and how they benefit the sensor system in terms of

making best use of available sensors, efficient data gathering and delivery, using the pro-

cessing capabilities of sensors and protecting the sensor ensemble against spontaneous

and occasional sensor faults or breakdowns without disrupting the activity recognition

process. The implementation of this approach is implemented in a framework called

DarSens which is able to perform activity recognition on a body sensor network with

the feature extraction and classification performed within the sensor network without

needing to revert to the processing capabilities of a client device using the sensor ensem-

ble. Three experiments have been conducted to show the feasibility and performance

of the approach in a typically activity recognition task.
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Chapter 1

Introduction

This chapter motivates the work by showing the central theme ranging from the early

days of personal computing over to the present and suggesting a way for the future.

The introduction also outlines the goal and the research questions of this work and

gives an overview about this thesis.
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1.1 Motivation

When computers started to be accessible for personal use in the late 1980s more and

more people started to use them e.g. for gaming purposes, household financing or

simple replacing typewriters and writing then documents digitally. In the early days a

profound knowledge was necessary to operate a computer. Over the following years a

lot of effort was made to make computers more usable for laymen.

Nowadays computers are usable for laymen but they still depend a lot upon the knowl-

edge of their users. The human being has to actively work with and focus on the

computer in order to achieve a goal. To advance further, it is necessary to shift the

focus of attention away from the computer and from operating it towards achieving a

goal implicitly. E.g. when entering a conference room it is “socially” expected to turn

off the sound of a mobile phone – now a user has to manually get his mobile phone out

of his pocket and set his device accordingly. The user has to interact actively with his

mobile phone to achieve this goal.

Context is any information that can be used to characterize the situation of an entity.

An entity is a person, place, or object that is considered relevant to the interaction

between a user and an application, including the user and applications themselves. [1]

However if the mobile phone would recognize the context the user is in, it could ac-

complish this task without interaction of the user. Recognizing the context of a user

is a challenging task which may involve using multiple types of sensors, multiple com-

puting devices and, to be more general, involves accessing information from a highly

heterogeneous environment.

1.2 Activity recognition

Context recognition composes of different types of sub fields, one of this is activity

recognition. Which in turn is a broad research field in itself. This work focuses on

human activity recognition. Which is a stepping stone to build computer system that

can implicitly perform tasks which would otherwise require human interaction. In order

to recognize the activity a human is performing, we need sensors. There are a vast

amount of different sensor types available. However most research projects incorporate

and emphasize the use of acceleration sensors. While early research work in this field

started out using single sensor systems the trend is to use more than one sensor.
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When looking at nowadays multi-sensor systems, they either consist of multiple sensors

of the same type [22] or use multiple sensors of different types [24]. The more sensors

are incorporated in such systems, the bigger is the need to coordinate the data flow in

such systems, especially if the used communication channel is wireless. Typically, the

systems are centralized, having one coordinator with centralized control, although there

is the beginning of a paradigm shift towards decentralized control or more distributed

approaches [13].

1.3 Goal and research question

The main task of this work is to create a distributed activity recognition system which

should be composed of sensor nodes which are equipped with an acceleration sensor.

These sensor nodes should be attached to the human body and recognize the activity

the wearer is performing. The recognition process should use the data obtained by the

acceleration sensors of those sensor nodes and an exchange of their data should happen

wirelessly and support the recognition task.

Furthermore the system should make best use of available sensors in the environment

and manage and use their resources (e.g. processing power or battery) without tailoring

down the system to a special activity recognition problem.

The system needs to perform sensing, processing and communication of activities rec-

ognized. The sensing goal specifies what needs to be recognized and the system will

take care of translating this into a machine-readable format, which will be used to

self-organize the available sensors.

Derived from this the research question is at follows:

RQ: What are the potentials and (observable) benefits of a sensing goal initiated multi-

sensor activity recognition approach as opposed to traditional multi-sensor fusion strate-

gies?

a) What are appropriate policies for spontaneous sensor ensemble configurations, and

how can they be derived from sensing missions?

b) How can mechanisms of self-organization (as seen from an individual sensor) and

self-management (as seen from sensor ensembles) be embedded into opportunistic

sensing strategies?



Introduction 4

c) How can the run-time operation of goal driven, opportunistic sensing ensembles be

secured and protected against spontaneous and occasional sensor faults?

1.3.1 Hypotheses

ad RQ) A major benefit when using a sensing goal initiated multi-sensor activity recog-

nition approach is, that the system is capable of recognizing different sets of activities

at runtime, by only changing the sensing goal unlike traditional systems, where this

has to be done at compile time. Furthermore it is also possible to detach the link

between the activity recognition and the types and amount of sensors needed for the

recognition task, insofar as for a sensing goal multiple sensor ensemble configurations,

aka sensing missions, can be available and used based on the available sensor nodes

within the environment.

ad RQ a) The sensing mission constraints the sensor to ensemble themselves to fit the

configuration specified by the sensing mission. Insofar as the sensing mission specifies

from which body parts sensor data needs to be gathered, how it needs to be combined

and processed to fulfil the sensing goal. However, unlike static configurations used in

traditional sensor fusion approaches, where the exact sensor needs to be specified, e.g.

by the MAC address, only the body positions from which data needs to be collected

constrains the sensor ensemble. To be more general this approach only constraints the

sensor ensemble by specifying which sensor data needs to be gathered but not from

which sensor.

ad RQ b) In order to perform opportunistic sensing, an individual sensor needs to be

able to communicate with his environment, the other sensors. Using a shared interac-

tion protocol its possible for a sensor to specify what ’duties’ are needed to be performed

by other sensors and what the sensor itself is capable of. Using the self-organization

approach the sensor ensemble is able to perform self-management because upon receiv-

ing a sensing mission, a sensor node will try to satisfy the goal specified within it with

the help of other sensor nodes. Within the sensor ensemble communication channels

will be opened where necessary to deliver data from the sensors to the receiver of the

recognition chain.

ad RQ c) As easily as opportunistic sensing ensembles can come into existence, they can

also be disturbed by unforeseeable change within their loosely coupled environment. It

is essential to provide a mechanism to mitigate this change, the disappearance of sensor

nodes. This can be achieved by letting the system manage itself using the same self-

organization technique that was used to form the sensor ensemble in the first place and
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replacing the disappeared sensor nodes by other sensor nodes found in the environment

if possible.

1.3.2 Key benefits

The key benefits of using a sensing goal initiated multi-sensor activity recognition ap-

proach, as implemented in this work, are:

goal change at run-time the recognition goal of the sensor ensemble can be changed

at runtime

no exact sensor specification its not necessary to specify which sensor to use but only

which data needs to be gathered

interaction protocol for self-organization sensors can cooperate using an interaction

protocol which enables them to state their needs and their own capabilities and

enables them to fulfil a sensing goal

run-time reconfigurability sensors can detect faults of other sensors and replace those

sensors at run-time without disturbing the recognition task

1.4 Outline

The outline of this thesis is as follows:

• Chapter 2 provides an overview about the existing work in the activity recognition

and distributed (sensor) systems.

• Chapter 3 provides a conceptual description about the framework for distributed

activity recognition which incorporates sensor data acquisition, feature extraction,

machine learning within a sensor network without centralized control.

• Chapter 4 provides details about the implementation, architecture and design of

the framework on an embedded system platform with wireless communication

facilities and different sensors.
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• Chapter 5 provides an evaluation of the framework and implementation by per-

forming three types of experiment, which show the feasibility of the approach

taken.

• Chapter 6 sums up the paper by drawing a conclusion and indicating how future

work could further improve the work already done this thesis.
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Chapter 2

Related Work

This chapter covers an introduction to pattern recognition concepts. Additionally re-

lated work in the context of activity recognition is presented and key problems are

identified which lead towards the development of opportunistic activity recognition.

Furthermore parts of this chapter focus on how to self-organize components in a sensor

system and what efforts have been made regarding distributed service discovery.
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2.1 Pattern recognition and the recognition chain

Pattern Recognition - the act of taking in raw data and taking an action based on the

“category” of the pattern - . . . [7]

The above statement by Duda et al. [7] defines what pattern recognition is. Several

steps of work have to be done in order to perform this action. These steps which have

to be executed sequentially are called the recognition chain and are incorporated in

every activity recognition system:

• extraction of raw sensor data - sensor data needs to be sampled from a sensor –

e.g. an acceleration sensor – by converting analog measurements into a digital

representation

• pre processing - unnecessary information for the total outcome of the recognition

chain will be stripped from the raw data gathered, e.g. removal of noise generated

by an acceleration sensor by applying a low pass filter.

• feature extraction - the raw data contains certain properties or features which

can be measured and used for further processing, e.g. when using a three-axis-

acceleration sensor a property would be the orientation of the sensor [27]

• classification - based upon the features or measurement taken a decision will be

made, e.g. based on the orientation of an acceleration sensor attached to a human

body it will be decided if this person is standing or lying.

• post processing - based upon the classification results and a-priori knowledge, post

processing can be applied to smooth the overall outcome of a recognition chain.

E.g. a person will not be able to switch from lying to standing and back within a

few milliseconds therefore a system will omitting such unreasonable classification

results and instead alter the output of the classification from standing to lying.

2.2 Activity recognition systems

2.2.1 Wearable sensor badge and jacket

The sensor badge [9], which is one of the earliest and most successful work in activity

recognition, consists of acceleration sensors which were then used to measure forward
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and upward acceleration. To distinguish between static postures (standing, sitting, ly-

ing) and dynamic activities (walking) the difference between minimum and maximum

measured values were used over a sampling window of one second with 20Hz. To dis-

tinguish between the static postures the average of the sampling window was computed

and assigned to a posture. To distinguish between walking and running the maximum

and minimum on both axis was used. The vertical maxima, unlike the horizontal max-

ima, differs significantly and was used as an indicator for distinction. Additionally the

frequency of the movement was a second indicator, which was estimated by the average

crossing rate, a feature which is also used in this work. The overall detected state was

visualized through a set of LEDs, whereas each LED was assigned to an activity or

posture.

The sensor jacket complements the sensor badge and consists of knitted stretch sensors

and knitted conductive sensors which were integrated into the fabric. It was used to

detect the elbow and wrist positions of the wearer but had to be calibrated for each

user. Data was sampled in real time by 50 Hz and the detected positions were displayed

on a PC. Later work by [31] also continues to integrate sensors into clothing, in this

case also a jacket which combines information from several inertial measurement units

to track the assembly of a car.

2.2.2 From PadNet to SMASH

PadNet [17] has been developed to be seamlessly integrated into clothing while making

the distribution of sensors over the whole body possible and an easy task. One signif-

icant observation – “most user activities can be characterized by certain motion and

state patterns of distinct body parts” has influenced the system design. The architec-

ture consists of multiple subnetworks, each with a master and a central master which

links the subnetworks together in a hierarchical manner. This separation of the sensor

network into two layers has the objective to increase local processing, minimize data

transfer and reduce the computational load and requirements for the central master.

This concept is also essential for the approach taken in this thesis. Namely that partial

activity recognition of distinct body parts should be enforced and that this will benefit

the overall system performance. But unlike PadNet, which uses serial communication,

the challenge, of implementing such an approach is enhanced by the problem with

wireless communication.

SMASH [13] can be seen as further development of PadNet. It consists of three hi-

erarchically linked layers of processing, cf. Figure 2.1. At the lowest layer “sensing

terminals” sample, filter and transmit data to the next level. Within the next level

gateways collect data from their attached sensing terminals, fuse the data and extract
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(a) layers (b) deployment

Figure 2.1: SMASH[13]

features. The highest level consists of a single unit –“Konnex”– which is the centralized

control for the network and collects the data from the gateways for the last processing

step which takes the data and performs an online classification with the result sent to

the user. In order to evaluate the system, a user study was performed which provided a

user-specific accuracy of 85% when detecting different arm positions with 10◦ difference

whereas typically only adjacent classes of arm positions were detected wrong.

2.2.3 Acceleration

One of the most frequently used sensor modalities in activity recognition is accelera-

tion. [3] presents a good overview of research work which use acceleration sensors. In

general kinematic motion is used to detect dynamic human activities while gravitation

acceleration is used to detect postures [18]. Furthermore posture and movement was

discovered to be the most useful context identifier in a study examining daily activities.

Location and Object of interaction where the next best context identifiers, which how-

ever were 10% less relevant. This is also a reason why this work focus on acceleration

sensors although combining multiple different sensor types may yield better activity

recognition performance, as presented in the next sections. In the following paragraphs

issues and limitations and usage of acceleration sensors are presented.

One problem which still has to be addressed is that acceleration sensors are affected by

the gravitational force and therefore the orientation of the sensor has to be known or

calculated using the approach presented in [27]. Another lesser problem of acceleration

sensors is that they can only detect acceleration but not velocity and that only relative

movement against the body can be detected.

In [20] the impact regarding activity accuracy drop due to sensor displacement in activ-

ity recognition systems with acceleration sensors is presented and a mitigation strategy

is discussed. An acceleration signal composites of the following contributions: orien-

tation due to gravitational force, translations and rotation. Whereas only the later is
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affected by sensor displacement and can be measured by a gyroscope. In order to be

independent of the location of the sensor on a body part and a possible sensor shift

while using it. It is necessary to separate an acceleration reading based on the dominant

contribution (orientation, translation or rotation) and successively weight the location

independence of the measurement. Given a measurement, where the acceleration vec-

tor is similar to the vector of a free falling object, a low measured angular velocity

or the acceleration measured by a gyroscope it can be concluded that the acceleration

signal is not governed by rotation and hence location independent. Therefore the data

measured can be used safely in an activity recognition process.

In [4] a portable acquisition system is presented. It consists of a 450g heavy black box

which integrates a digital signal processor and can use Bluetooth or GPRS for com-

munication with a PC, which can acquire signal from up to 16 sensors simultaneously.

In an experimental setting the system was used to measure inclination of human body

segments using 2-axis acceleration sensors. The sensors where aligned so that the grav-

itational force was fully measured on one axis and the other axis measured zero in this

calibration and reference setting. When the inclination changed – e.g. when the shank

is moved to be parallel with the floor the first axis measures zero while the other mea-

sures full g-force – a shift from one axis to the other is measured and the angle of the

falling gradient can be computed. To test the system in use on a jacket and special limb

racks 16 sensors were placed on all body segments except the head. The measurements

were fed into a LabView program via Bluetooth which in turn calculated the angles

and visualized using a 3D human model. In order to do so a 30 seconds calibration

phase is needed to adjust the program to mitigate positioning errors. The update of

the human model is performed in real-time mode as long as the person is not moving

too fast because then the angle of the body segment can not be calculated correctly.

In [8] a body posture recognition system based on the body area wireless sensor network,

WiMoCA is introduced. Using three sensor node, whereas each features a tri-axial

accelerometer, placed on thigh, chest and shank the system can separate seven different

activities – variants of standing, sitting and lying. For recognition each sensor node

computes the average acceleration on a sample window for each axis and computes the

orientation of the sensor. The tilt information in respect to gravity and the location

of the sensor is then sent towards a base station. The base station combines the tilt

information from each sensor node and based on that looks up in a table which tilt

configuration belongs to which activity. The activity information is then relayed to

an application residing on a PC. Using a collision free MAC implementation which

additionally handles synchronisation the system is able to continuously monitor a user

with a sampling rate of 30 Hz for 19 hours. This star topology approach is frequently

related research.
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Jeoung et al. [16] assembled a sensor board with a 3-axis acceleration sensor and a

communication facility which implements the IEEE 802.15.4 wireless communication

standard for personal area networks. The system is using TinyOS, a small memory

footprint and low power event-driven operating system[10]. The system is trimmed to

recognize lying, sitting, standing, walking, running and falling. For the latter three

activities the system computes the signal vector magnitude and the differential signal

magnitude vector, over a 0.5 seconds window size – 50 samples for the used 100Hz

sampling rate, and based on a threshold decides the “activeness”. Under a certain

threshold the user is not performing those dynamic activities and the system decided

by a simple threshold algorithm based on mean value of each axis over the same window

size as before. In an performance evaluation the system could recognize falling, standing

and lying with 100% accuracy, running with 96% and walking with 98% – a total

recognition rate of 99.2%.

2.2.4 Acceleration and sound

In order to further increase the accuracy of activity recognition systems other sensor

types have been investigated. One of the most prominent additional type used in

research is sound.

Lukowicz et al. [24] combined acceleration sensors and microphones in order to recog-

nize activities performed in a wood workshop. For motion detection the PadNet, cf.

2.2.2 was used. As for sound two microphones were used, one located on the chest and

the other located on the dominant hand, in order to use the measured intensity dif-

ference between those two location. To recognize gestures performed at the workshop

HMM were used with an recognition rate of 95% on training data.

To extract features from sound the Fast Fourier Transformation (FFT) was applied

to frames of several seconds length with a Linear Discriminant Analysis to reduce

the feature space further. Classification was performed using a supervised learning

approach where the mean value for each class was calculated and new unseen data was

labelled by choosing the next class mean. With this approach a recognition rate of

90% was achieved on training data. In order to distinguish sounds further they were

separated into three “intensity” levels. Sounds with high intensity difference between

hand and chest microphone – e.g. produced by working with a saw. Sounds with

varying intensity difference between the two microphones, the sound starts with the

hand of the user close and the hand gets removed while the sound continues – e.g.

while using a stationary driller. The third class are background noises and noises which

don’t involve the users hand. When using only frames where the intensity level was

above a given threshold – frames belonging to the first and second class the recognition
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rate was increased by an additional 2%. While performing the experiments it was noted

that the acceleration based and sound based classification each tend to report the same

set of activities when assigning the wrong class label. However these sets of activities

were distinguishable from each other and could be used to rule out false positives and

increase the overall recognition case in a continuous working mode, from 72% using

only acceleration, 2.8% using only sound towards a 84.4% using both modalities.

2.2.5 Acceleration and RFID

Another way to enhance activity recognition is do combine it with RFID technology

which leads to very promising results in terms of accuracy.

In [15] three acceleration sensors worn on thigh, waist and wrist. Whereas the sensors

on thigh and waist were used to decide between the standing, lying, sitting, walking

and running and the sensors on the wrist was used in combination with an RFID reader

to decide what was the user doing with a given object. The wrist sensor was used to

separate between lateral, vertical and rotational movement.

The RFID reader was integrated in a glove and samples with 3 Hz and has a range of 5

cm so only objects in close proximity were detected. Unlike previous research the body

state, hand motion and detected object by the RFID reader was used to distinguish

more precisely between a set of daily activities. E.g. only when a vertical motion at

the wrist is detected and a cup is in the user hand the detected activity is drinking,

unlike e.g. when you rotate the cup and empty its content. Given the combination of

the three separated inputs for overall classification which are hierarchically linked the

system can detect the right activity out of 18 different activities with an accuracy of

95%.

2.2.6 Acceleration and RSSI

Quwaider et al. [29] introduces a body posture identification system based upon the

Mica2Dot wireless measurement system with a two-axis acceleration sensor attached

to it. Four nodes where deployed in the sensor network and located on each thigh and

upper arm. Using a 20 Hz sampling rate for the acceleration sensors and analysing the

FFT amplitude of the average value of the signal on both axis a distinction between

walking, running and less dynamic activities was made. However to separate the less

dynamic activities – namely sitting and standing – the acceleration signal was found

to be not good enough and instead proximity information is used. Each sensor nodes

obtains a table of radio signal strength indicators (RSSI) by periodic broadcasting a
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“Hello” beacon. The average RSSI tends to be high for a person sitting and rather

low for standing posture however through radio blockage by clothing, other objects,

sensor and antenna orientation and alignment problems a simple threshold based ap-

proach may match in up to 90% however this is highly situation dependent and not

applicable for different subjects. To address this issue a HMM has been introduced

which uses the current RSSI value and the relation to a peak-to-peak RSSI range as

an observation vector and can achieve an accuracy up to 94% (minimum of 86%). Us-

ing an expectation-maximization algorithm they can iteratively adjust the observation

probability matrix to fit a subject for a given and initial “false” observation probabil-

ity matrix, this behaviour increases the accuracy of the recognition further after some

time.

2.2.7 Other sensor types

Van Laerhoven et al. [22] experimented with two different types of sensors. On the

one hand they used a set of 20 accelerometers assembled together on a bar, called the

spine. On the other hand they used nine wireless sensor nodes with ball or tilt-switches

installed on it, called the porcupine. Both sensor systems were using serial communi-

cation to collect the data from all sensors or sensor nodes which in turn were forwarded

wireless to a base station. While performing the study Van Learhoven et al. first tried

to use porcupine’s sensor node wireless communication facilities for data collecting how-

ever through a lot of packet collisions and not reaching the required throughput they

switched to wired communication. This problem was also experienced in this thesis

an will be revisited later on. The activities performed during the experiments were:

lying, kneeling, sitting, standing, walking, running, ascending/descending stairs, bicy-

cling and jumping while both sensor platforms were attached to the test subject’s legs.

The overall classification accuracy for spine was 93.88% and 65.24% for porcupine. In-

terestingly was the finding that when using boosting with porcupine – classifying first

locally on each sensor node and classify one with all local classification results – they

reached a accuracy of 62%. This emphasizes that a distributed approach will yield

promising results and be as good as a centralized approach. They also underline that

neglecting or decreasing the accuracy of sensor node’s data by classifying locally will

still be valuable when using a good algorithm for fusing the data back together.

Another approach for context or activity recognition is presented by [5]. They created

a logging application on a mobile phone which is carried by a user to record daily live

activities. For activity recognition it uses the mobile phone’s cell id and information

about Bluetooth devices in the environment (MAC Address, major and minor device

number). The user labels the data with activity information and a temporal relation

model is deduced. This model is later used for predicting the activity the subject is
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performing. The harmonic mean of precision and recall of the activity recognition was

up to 96%. This shows once more that quite simple and at first glance “irrelevant”

features can be good context identifiers.

Concluded activity recognition have evolved from single sensor systems into multi-

sensor systems, whereas not only multiple sensors of the same type were used but

also multiple sensor types have been integrated. The tendency is towards multiple-

heterogeneous-sensor system. However these systems imply a significant challenge:

The management of such systems.

The more sensor nodes used the bigger the following problems are in such traditional

multi-sensor fusion system with static configuration:

communication when adding a sensor node, the communication pattern needs to be

adjusted, the software needs to be recompiled and deployed to all sensor nodes

change of the recognition goal when changing the recognition goal, the software

needs to be changed and deployed to all sensor nodes

replacement when replacing a sensor node the software needs to be recompiled and

deployed to all sensor nodes which interact with this sensor node

breakdown breakdown of a single sensor will result in a breakdown of the total sensor

system without a recovery possibiliy

Therefore it is essential to shift towards a more dynamic approach. Where sensor nodes

are more or less independent from each other. They can discover their neighbours

capabilities and self-organize themselves to achieve a recogniton goal.

2.3 Distributed systems and self-organization

Collier et al. [6] investigate how to define self-organization in sensor networks and

what challenges are. They define that a system is self-organizing if a collection of those

system components work together and coordinate to form a collective which adopts and

achieves a goal more efficient than a single component could. The following enumerates

the definition into a set of features:
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1. The system is composed of units which may individually respond to local stimuli.

2. The units act together to achieve a division of labour.

3. The overall system adapts to achieve a goal or goals more efficiently.

[6]

Despite the complex nature of the presented features wireless sensor network face fur-

ther challenges like limited power, limited radio range, high density and an highly

dynamic environment. Especially the coordination of communication is a problem be-

cause two sensor nodes may not access the MAC layer simultaneously but have to

schedule their access and through the limited communication range they have to sched-

ule routing of messages within the network. So in general wireless sensor networks will

try to optimize data throughput, low latency between any sensor node within the net-

work. However this may not hold as some sensor nodes may create more data or have

more important data then others. Therefore are privileged and routed faster towards

a data sink. Less mission critical data is delayed.

[26] proclaims that self-organization is an emergent feature of all distributed system.

A system may reach a certain state where it is stable although fluctuation may occur.

Changes in the environment, which will shift the system into a less stable state, will force

the system to adopt in order to go back to a stable state. This adaptability will make

the system able to deal with failure of components it is composed of. Self-organization

may organize over time, space or both whereas they tend to be hierarchically structured

and the hierarchical layers are spatial similar. This phenomena of self-organization can

be found amongst others in – e.g. where homogeneous cells of embryos evolve into

heterogeneous cells with specialized function, social science – e.g. where swarm of birds

can manoeuvre as flocks, or economics – where supply and demand on the market

change the behaviour of consumers and producers alike.

When applying this self-organization behaviour to wireless sensor networks [26] they

look into the ability of the system to accomplish the following: (i) sharing physical

resources, (ii) structuring, (iii) adapted behaviour, (iv) manage collective resources and

(v) ensure survival.

(i) Sensor nodes can share physical resources and capabilities to other sensor nodes

within the network e.g. nodes with bigger battery supply may announce their superi-

ority and take over message relaying from devices with low power in order to maximize

overall life time of all nodes. (ii) As for structuring refer to the later example of Any-

Body [32]. (iii) A sensor system might adopt its behaviour in form of reconfiguring

software modules, whereas a sensor node senses the need of his environment for ac-
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complishing a special task and the sensor node will change his software configuration

– e.g. load and unload of modules – to fulfil this task. (iv) Within a sensor network all

sensors commonly share the communication channel with each other. Given a sufficient

density in such a sensor network its not necessary to power on all sensor nodes to deliver

information. On the contrary powering on all nodes will likely create interference and

diminish the networks throughput. Therefore a sleep, wake and forward algorithm will

adjust this behaviour if two neighbouring nodes fail to be able to communicate with

each other without his help. (v) A sensor system should be able to deal with sensor

node failure. This is important for sensor networks with a cluster structure. Cluster

heads may exchange information about their fitness or existence and adjust if one of

the cluster heads fails to perform proper.

AnyBody [32] is a protocol for self-organization which focus on structuring the sen-

sor network into cluster which efficiently in terms of speed and power route messages

from data sources to a sink. First each node discovers his one-hop neighbours – neigh-

bours it can communicate to directly – by broadcasting an appropriate message and

receiving responses of the neighbours. Secondly a node will discover the neighbours

two-hops away by relaying the previously broadcast and received message from other

sensor nodes. After complete knowledge of its neighbours a sensor node will calculate

the density (ratio between number of links and number of nodes within this 2 hop neigh-

bourhood) and broadcast it. Afterwards each node, except the node with the highest

density in its neighbourhood, will send a list of 1 hop neighbours towards the neighbour

with the highest density with a join request. With this join request the node with the

highest density is now the clusterhead of its neighbourhood and all messages will be

routed to/from it. Each cluster, respectively clusterhead, will poll through its cluster

member nodes and collect information about which node has neighbouring node outside

the own cluster. These nodes will be inter-cluster gateways. They will relay messages

from other cluster/clusterheads to its own clusterhead. In case of a single sink, where

information has to be sent to, its necessary to set up routing towards it. This is done

by the sink sending out a message to its clusterhead which in turn increases a counter

within the message and send it towards its neighbours. By storing where they received

and sent the message to and the appropriate counter value the clusterhead can infer

which is the next clusterhead. A message has to be sent to, in order to end up at – be

relayed to – the sink.

In [28] object networks are described as a headstone for self-organization in order to

perform distributed activity recognition. The object network is an overlay network

of interconnected devices around a user. This network is hierarchically organized and

contains a leader object. Each object takes care of sensing and discovering other objects

and selecting a leader object, which should be the most powerful – in terms of e.g.

battery supply, processing capabilities or storage – device in the network. Each object

may have a role in this network like acquiring sensor data or process data of other
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objects. A role may be dependent on the work of other roles. These dependencies

automatically create context zones where one or more objects provide information to

one object which needs the information provided by those objects to fulfil its role. This

can be used to abstract the information, provided e.g. by low level sensors, which is

processed and combined into a simpler representation – e.g. by classification. Context

zones can be hierarchically linked however at the top of the overall network will always

be the leader object. Which will use the data generated by the object network and

a map of relations between activities (activity map) to infer what activity the user is

performing. E.g. activity use cup and use coffee machine will let the system infer that

the user is having a cup of coffee. This examples underlines once more the need to

classify locally and feed preliminary classified data into the overall activity recognition

process.

With the principles of self-organization it is possible to overcome the problems of multi-

sensor fusion systems with static configuration. Self-organization can be used to dynam-

ically configure a sensor network. The examples presented outline how a sensor system

can be structured to fulfil a goal, e.g. like relaying messages efficiently from sink to

source. Therefore in order to create a sensor system, which uses dynamic configuration

and is able to change its goal at runtime, it is essential to incorporate self-organization

into the system’s design.

2.4 Distributed systems and service discovery

Service Discovery is proposed as a solution to the problems with high dynamics and

heterogeneous environment in pervasive computing by [33] or [11]. Service discovery is

needed in order to know what services are provided by an environment. This obtained

information can later be used to combine several services to create an activity recog-

nition service/system. By e.g. combing the sensor data from different sensor services.

Various service discovery approaches exists, two prominent representatives are Sun Mi-

crosystem’s Jini and Microsoft’s UPnP. For better understanding the service discovery

approaches its essentially to understand the underlying concept in service discovery

approach, service registration and service infrastructure.

Two service discovery approaches exist: announcement-based and query-based. In the

first case every participant in the network environment listens to service announcements

by other participants which occur periodically. In the latter case a participant in a

network requests service information from his environment.
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As for service registration and infrastructure two different modalities exist as well:

directory or non-directory based. In the first case, a centralized authority holds in-

formation of services available in the surroundings. If a new service gets available in

the network it will register itself with the authority and can then be accessed by other

participants. In an environment based on non-directory based service registration and

infrastructure every participants holds information of services available. A new service

will announce its availability and the other participants will store this information for

later usage.

Those service discovery methods work quite well in a known environment. However

when considering advances in ad-hoc sensor networks, which are more and more com-

mon in pervasive computing and have proven their feasibility, applying these service

discovery approaches leads to certain issues. Considering pairing announcement based

discovery of services and non-directory based infrastructure which would be ad-hoc the

best selection for an unknown environment. The main issue here is the flooding of the

network with announcement on a regular basis, which is not feasible for a network with

wireless communication because this is the main power drain for such sensor systems.

Furthermore the information of all available services has to be stored on every partici-

pant which may lead to memory shortage as the main memory is still limited on such

devices. If using query based discovery with a non-directory based infrastructure it

may take a lot of requests to find a suitable service, again draining the battery. On

the other hand when using queries with in a directory based infrastructure, the central

authority has to be located in the first place if it is in communication range at all. If

this isn’t the case although other services are available in close proximity they can’t

be used. Finally service composition may only occur at the requester site which leads

to the fact that the data produced by all services has to be transported through the

network, which will reduce bandwidth throughput and therefore increase the energy

demand within the network.

Therefore, service discovery may be a valid alternative to self-organization for ac-

tivity recognition in known environments, however, in unknown environments self-

organization will be more suited as it’s more goal oriented and will structure the sensor

system to be more efficient.
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Chapter 3

DarSens

In this chapter the approach for opportunistic activity recognition, the solution for the

problems of traditional multi-sensor fusion systems, is extended and explained. This

approach includes access to data, processing capabilities of a sensor node in a reusable

way. Furthermore classification and feature extraction is performed on-site and sensor

nodes can interact with each other without a-priori knowledge of each other. This

approach is extended and implemented in a framework called DarSens .
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3.1 Approach

As deferred by the related work, the challenges of wireless sensor network – communica-

tion pattern, change of recognition task, replacement and breakdown issues – are only

solveable with a more dynamic approach, namely opportunisitic activity recognition,

as also proposed by the European research project OPPORTUNITY.

The purpose of opportunistic activity recognition is that just those sensor that can

provide relevant information cooperate to achieve the goal of recognizing an activity

or multiple activities. These activities are combined and called a recognition goal, e.g.

locomotion activities like walking, standing and running).

This recognition goal is an abstract concept, which has to be transferred into a coor-

dinated sensing mission to be processable for a sensor system. This sensing mission

specifies how and which sensors have to cooperate in order to satisfy the recognition

goal. In order to translate a recognition goal into a sensing mission it may be necessary

to create a database where each recognition goal has at least one sensing mission stored,

in order to be able to translate automatically.

3.2 Concept

The concept of DarSens is easily explained with a application scenario. Consider

a mobile-phone being interested in the situation the wearer is in. Additionally the

wearer has a set of sensor nodes integrated into his garment. Now in order to adapt its

behaviour to the user a mobile phone will be interested in certain activities of the user.

E.g. if the user is currently running to catch the train it will reject a call, in order to not

disturb the user, and notify the caller accordingly. To access the activity information

the mobile phone will request the desired information using wireless communication.

As the user is equipped with a sensor network, it will receive this request and will then

self-organize to provide the mobile phone with the desired information.

To be more precise the mobile phone will transform its recognition goal – the activities

it is interested in – into a sensing mission and broadcast this sensing mission. The

sensor nodes will receive this sensing mission and self-organize themselves to fulfil the

requirement of the sensing mission. If this requirements can be satisfied a confirmation

of this status, namely a satisfied sensing mission, will be delivered to the requester which

can use this confirmation to start the recognition process within the sensor network.

This behaviour is illustrated in Figure 3.1.
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Figure 3.1: Concept

3.2.1 DarSens and Opportunity

DarSens shares the conceptionally ideas of OPPORTUNITY,cf. Table 3.1 and copies

its nomenclature. The focus in DarSens lies on transforming the sensor network into

a coordinated sensor ensemble by the use of a sensing mission and the communication

behaviour. The recognition goal and its transformation into a sensing mission is omitted

within DarSens. An approach for this behaviour would be a database lookup where for

each activity or set of activities a corresponding sensing mission is returned and used

to self-organize the sensor network.

Since the recognition goal consists of activities, whereas each activity can be detected

using sensors on different places on the body or types of sensors, there are many possi-

bilities for the layout of a corresponding sensing mission. E.g. walking can be detected

on many body positions [19], like left thigh, right thigh, left shank, right shank or

combinations of those positions. Therefore a recognition goal ’walking’ could have 15

different sensing missions stored. Any of those sensing missions may be suitable and

could be chosen to recognize the activity. Now if the environment doesn’t have a sensor

on a body position specified in the sensing mission another sensing mission can be cho-

sen at runtime. This is a major benefit of this recognition goal initiated multi-sensor

activity recognition approach as opposed in traditional multi-sensor fusion strategies

where it is necessary that all sensors need to exist. Especially within a wireless sensor

network this approach is not fit to mitigate the cessation of wireless sensor nodes, which

may occur because of low running batteries or system faults.

DarSens focuses and implements the concepts of the sensing mission and the com-

munication in a four step approach. First a requester – someone/something in need of

activity information – broadcasts a sensing mission. The sensing mission will be used to

self-organize the network and if successful a satisfied sensing mission – the correspond-

ing notification of the self-organization process – will be sent to the requester. This
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requester can in turn use the satisfied sensing mission to start the activity recognition

process, cf. Figure 3.1.

OPPORTUNITY

• recognition goal

• sensing mission

• communication

DarSens

• broadcast sensing mission

• sensors receive sensing mission
and self-organize

• if successful a corresponding no-
tification will be delivered

• approval of the requester of the
requester to start the activity
recognition process

Table 3.1: Comparison of DarSens and OPPORTUNITY

3.3 Sensing mission and satisfied sensing mission

In DarSens sensing missions and satisfied sensing missions are represented with the

help of a self-developed containment hierarchy. It defines which sensor nodes of a

sensor network take part in a sensing mission.

3.3.1 Containment hierarchy

The layout of the containment hierarchy is motivated by two ideas also found in related

work, cf. Chapter 2. (i) That most activities can be characterized by characterizing

sub-activities or state/motion changes in certain body parts [17] and (ii) that neglecting

accuracy through local classification on sensor nodes and fusing the data back to to-

gether will result in an overall good system performance (activity recognition, accuracy,

battery life-time, . . . )[22].

The hierarchy is based upon the anatomy of the human body. The root element of

every containment hierarchy is always referred to human. The following child nodes

are named head, left arm, right arm, left leg, right leg and torso and resemble the

extremities of a human body. These body parts can be further segmented e.g. left leg

the corresponding children are: foot, shank, thigh. This approach can be used to create

a hierarchy that represents the position of a sensor node on the human body. E.g. for a

sensor node placed on the shank of the left leg the containment hierarchy would consist

of the human, left leg and shank, , cf. Figure 3.2
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Figure 3.2: Sensor node placement and corresponding containment hierarchy

Now in DarSens every sensor node has to know its own position either pre-defined or

by using a localization approach such as presented in [19]. This position information is

stored and used for self-organization, cf. section 3.4.

Furthermore when the containment hierarchy is used to represent a sensing mission or

satisfied sensing mission, it identifies the positions of sensor nodes needed for activity

recognition, cf. Figure 3.3 – defining which sensor provides relevant information for

the recognition goal. Additionally through the structural overlap in the containment

hierarchy in a sensing mission, it also defines the recognition chain, i.e. the information

flow from input devices – acceleration sensors on sensor nodes – towards an output

device – a mobile phone with a corresponding interface to the sensor network.

A lot of activities can be identified by movement in respective body parts – E.g. most

locomotion activities like running or walking can be identified using sensor nodes at-

tached to the lower body parts (legs or hips) [2]. Therefore a sensing mission should

use only the sensor nodes which are placed on body parts involved in performance of

a given activity. Hence at the leaf nodes of the sensing mission raw sensor data will

be extracted and fed into the recognition chain. This raw data can be further pro-

cessed either by feature extraction, classification or both. This is specified by the ’F’

for feature extraction or ’C’ for classification, cf. Figure 3.2. Denote that classification

and feature extraction can be performed at every node in the hierarchy however it is

recommended to perform feature extraction and classification as soon as possible to

reduce the amount of data that has to be transferred to next level. When performing

classification over the data gained by sensor nodes on body parts, the goal should be to

recognize not solely the overall activities but the distinctive sub-activities for a given

body part. E.g. when using a sensing mission to detect jumping jacks, the sensor data

from the legs should be used to classify the posture of the legs at the left/right leg node

and combine it with the respective left/right arm posture in the human node.
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Denote that a sensor node which executes the tasks – sensor data acquisition, feature

extraction and/or classification – at a leaf node also executes tasks of the ancestors

in the containment hierarchy. But as the leaf nodes in a sensing mission share their

ancestors only one sensor node will be performing those tasks. The selection of the

sensor node to execute those tasks is part of the self-organization phase and will be

documented in the satisfied sensing mission.

A satisfied sensing mission is an extension of the sensing mission. It carries the same

information as the sensing mission however every node within the containment hierarchy

has a MAC address assigned, cf. Figure 3.3. With this assignments it its clear where

the tasks of the nodes in the containment hierarchy are executed. The satisfied sensing

mission is needed because multiple sensor configurations may be applicable to satisfy

a given sensing mission and hence it is needed for the requester to select a set of

sensors, which will then execute the tasks of the sensing mission. E.g. a sensing mission

consisting solely of the human node would be satisfiable by many sensors. Now, if all

of those would start sending acquired activity information, the requester would get

the same information multiple times, which would in turn drain the battery of all

sensor nodes and is completely unnecessary. Therefore when the sensor network sends

a satisfied sensing mission to a requester, it will selected a satisfied sensing mission and

the selected ensemble of sensors will start the recognition process.

1

2

(a) sensor
nodes

C

human

Cleft leg

F

shank

F

thigh

(b) sensing mission

C

1 - human

C1 - left leg

F

1 - shank

F

2 - thigh

(c) exemplary satisfied sensing
mission

Figure 3.3: Sensor nodes placement and a corresponding sensing mission/satisfied sens-
ing mission

3.4 Self-organization

When performing opportunistic activity recognition it is certain that the environment

is unknown, meaning there is no a-priori knowledge of the sensor nodes available in the
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environment. There are but two solutions to the problem: (i) Discover the environment

by inquiring information about all sensors and their capabilities and orchestrating these

sensors into an ensemble for activity recognition. (ii) Be opportunistic and assume that

the sensors needed for the recognition task are available, send out the sensing mission

and let the sensor nodes self-organize to satisfy the sensing mission.

(i) is the traditional approach for wireless sensor networks, however, the effort for in-

quiring what sensors are available is quite high, especially as every sensor needs to send

its capabilities to the inquirer – potentially relayed over many hops – which needs to

be processed even if they are not needed for the recognition task. The opportunistic

approach (ii) is better as, only necessary information from the network to the inquirer

is sent, leading to potentially less traffic. Furthermore for environments with changing

conditions, precisely the leaving and joining of sensor nodes, this approach is much more

suited, as in the first approach, the inquiry had to be done every time the recognition

goal changes, because the possibility is high that the environment has changed. The

keystone for this opportunistic approach is that the sensor nodes can self-organize them-

selves into a sensor ensemble, able to recognize the activities specified. The following

paragraphs explain how this self-organization is implemented in DarSens.

The self-organization process is constrained by the broadcasted sensing mission, as the

sensing mission defines from which body parts sensor data needs to be gathered. The

sensor ensemble can only successfully self-organize, if data from all body parts specified

in the sensing mission can be gathered, unlike static configurations where the exact

sensors – e.g. on MAC address basis – are specified. This has the advantage that the

sensor can easily be replaced without the need to change the configuration of the whole

sensor ensemble.

Since a sensor node knows his own position on the body and therefore the respective

containment hierarchy he can compare this information with the containment hierar-

chy of a received sensing mission. This comparison will result in the creation of a

containment hierarchy consisting of the nodes in which the sensing mission and the

local containment hierarchy differ. Based upon this comparison there are several ways

to processed:

• no participation

• participation

– full overlap – difference: 0 nodes

– almost full overlap – difference: 1 node
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– partial overlap – difference: > 1 nodes

3.4.1 Participation

A sensor node only participates in a sensing mission, if and only if it is useful to that

particular sensing mission. Usefulness in this context means that there has to be an

overlap between the sensing mission and the containment hierarchy insofar as a leaf

node of the sensing mission and the local containment hierarchy has to overlap. As

already stated previously the goal of a sensing mission is to recognize a set of activities

and the sensing mission should be composed of the containment hierarchies of the body

parts involved in this activities. Therefore if you want to recognize activities which

involve e.g. the thigh of the left leg you are not interested in sensor data of the left hip,

hence a sensor on the left hip will not participate in the respective sensing mission, cf.

Figure 3.4.

human

left leg

thigh

(a) sensing mis-
sion

6 - human

6 - chest

6 - hip

6 - left hip

(b) local containment hi-
erarchy

(6) - human

left leg

thigh

(6) - chest

(6) - hip

6 - left hip

(c) difference tree

Figure 3.4: Unsuccessful overlap between sensing mission and local containment
hierarchy

Denote that the depth of the local containment hierarchies can be higher than the one

of the sensing mission, cf. Figure 3.5. Participation is still successful because the sensor

data extracted is part of the specified body part in the sensing mission. Vice-versa this

would not be the case because the sensor data extracted would not be on the position

specified within the sensing mission. Therefore it is either necessary to specify the

position where to extract data in depth or use training data for the recognition chain

on several body positions. E.g. if the goal is to recognize locomotion activity (running,

walking, . . . ), its necessary to specify that the sensing mission uses data from the left

leg thigh – for instance – or use training data for the classification from the whole body

and solely specify human in the sensing mission.



DarSens 28

human

chest

hip

(a) sensing mission

6 - human

6 - chest

6 - hip

6 - left hip

(b) local containment hi-
erarchy

6 - human

6 - chest

6 - hip

6 - left hip

(c) difference tree

Figure 3.5: Successful overlap between sensing mission and local containment hierarchy

6 - human

6 - chest

6 - hip

Figure 3.6: Satisfied sensing mission

3.4.2 Fulfilment of a sensing mission

If and only if a sensor node participates in a sensing mission it will create a satisfied

sensing mission by inserting its own MAC address at all the overlapping nodes within

the sensing mission with no – previously assigned – MAC address assigned. If all nodes

now have a MAC Address assigned like in Figure 3.5(c) the resulting satisfied sensing

mission will look like Figure 3.6 and will be sent to the requester. If this is not the case

a sub-self-organization process will be started.

3.4.3 Sub-self-organization

For the sub-self-organization process the difference tree between the sensing mission

and the local containment hierarchy will be used as a starting point. The parts of
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the tree where all the nodes overlap – where after the creation of the satisfied sensing

mission all nodes have a MAC address assigned – will be pruned and the rest of the tree

will be packed into a single sub-sensing mission and broadcast to the sensor network.

There are two cases where this is the case either almost full overlap (difference: one

node) or partial overlap difference: more than one node) between the local containment

hierarchy and the sensing missions containment hierarchy.

human

chest

hip

left hip right hip

(a) sensing mission

6 - human

6 - chest

6 - hip

6 - left hip

(b) local containment
hierarchy on sensor 6

6 - human

6 - chest

6 - hip

6 - left hip right hip

(c) almost satisfied sens-
ing mission

6 - human

6 - chest

6 - hip

right hip

(d) sub-sensing mission

7 - human

7 - chest

7 - hip

7 - right hip

(e) local containment
hierarchy on sensor 7

6 - human

6 - chest

6 - hip

7 - right hip

(f) satisfied (sub) sens-
ing mission

6 - human

6 - chest

6 - hip

6 - left hip right hip

(g) completed satisfied
sensing mission

Figure 3.7: Self-organization process with one node difference

In the first case the sensor node will only need the help of one other physical node to

fulfil the sensing mission. E.g. in Figure 3.7 the satisfied sensing mission, 3.7(c), misses

one node to satisfy the sensing mission. Therefore it will create a sub-sensing mission,

3.7(d), out of the almost satisfied sensing mission and broadcast it. The sensor node

with the MAC address 7 will fulfil the request and respond with the created satisfied

(sub) sensing mission, 3.7(f), which will in turn be integrated into the almost satisfied

sensing mission of the sensor node with MAC address 6. Therefore the requested sensing

mission is now fully satisfied and the sensor node will send the satisfied sensing mission,

3.7(f), to the requester of sensing mission.
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In the later case there will be a master selection process, where the difference in nodes

between the local containtment hierarchy and the sensing mission is more than one.

E.g. as shown in Figure 3.8, all sensor nodes receive the sensing mission and either

participate or not. In our case the sensor node with the MAC address 10, 11 and 12

will participate. Everyone of those sensors will calculate the amount of nodes in which

they differ – two in our case – and broadcast this information with an additional random

number in case of equality. All sensor nodes will wait for an amount of time to receive

this information and if their own difference number or random number is higher stop

their own local master selection. After the time is up, or it received a message from

all applicable siblings of the sensing mission (u.arm, forearm and hand), the node with

the lowest difference number and random number elects itself as master and creates a

incomplete satisfied sensing mission, cf. Figure 3.8(c). The sensor node will of course

create a sub-sensing mission for the missing part. The process is illustrated in Figure

3.8(d) - 3.8(f) for sensor node 10 and 3.8(g) - 3.8(i) respectively. In early versions of

DarSens the sensor node which got elected as master splitted the sub-sensing mission

into respective sub-trees, in our case this would have been sub-sensing missions like the

local containment hierarchy of sensor nodes 10 and 12. However for performance and

to save bandwidth reasons this splitting will occur at the receiver side and only the

relevant part will be evaluated for the self-organization process as outlined in 3.8(d)

and 3.8(g) for node 10 and 12.

The master selection process will be performed multiple times per node within the hi-

erarchy until the sensing mission is satisfied and the completed satisfied sensing mission

can be sent to the requester. Denote that subsequent master selections will take place

on different nodes and not the node which “won” the first master selection.

Because of this behaviour its possible to use this mechanism in an environment where

not all nodes can communicate with each other or where this behaviour is discouraged

in order to save power. E.g. consider that the sensor node 12 (hand) is to far away

from the original requester of the sensing mission of Figure 3.8. The original request

will be received by sensor 11 and 10 and they will start the master selection process.

After the master selection process either one will be able to create a sub request for

the missing nodes of the satisfied sensing mission and they can communicate with the,

for the original requester unreachable, node 12 and fulfil sensing mission.

Denote that a (sub-) sensing mission can be satisfied by multiple sensor ensembles

using the self-organization mechanism. Therefore the requester of a sensing mission

will currently use the first satisfied sensing mission it receives to start the network

setup or integrate them into a existing satisfied sensing mission. Subsequent received

satisfied sensing mission will be discarded. It should also be noted that all requests

are done using broadcasts and responses are directly communicated between two pairs.
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Figure 3.8: Self-organization process with master selection
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Instead of using a “first come, first serve” approach the requester could also choose on a

heuristic, like which sensing mission is best for routing data energy efficiently towards

the requester. However this is not implemented yet but could be in future work.

3.5 Network-setup

After the self-organization within the network, the requester of a sensing mission may

receive one or more satisfied sensing missions and choose the first one to start the

network setup. If more than one satisfied sensing missions are returned, it would also

be possible to select one of those sensor ensembles based on meta-information e.g. power

left on those sensor node and selecting the sensor ensemble with the most power left,

however this is future work and currently not implemented.

The requester will notify the sensor node which sent him the satisfied sensing mission.

This sensor node which is also the sensor node assigned to the root node of the contain-

ment hierarchy of the sensing mission, will hence start the network setup, cf. Figure 3.9.

Upon arrival of this notification the sensor node will subsequently inspect the satisfied

sensing mission which is enclosed in the notification and examine the root node. E.g.

classification task in Figure 3.9 at the root node needs additional data to work properly

– in this case the classification model. However through the limited size of packets in

the IEEE 802.15.4 specification this data has to be fetched from the requester and can-

not be enclosed in the notification sent from the requester. The sensor node assigned to

the root node will request the classification model (dark/light green line in figure) from

the requester and afterwards relay the notification to its children so they can in turn

start the network setup. The information which features to extract is also fetched from

the requester in form of a matrix which enables data acquisition and feature calculation

per axis. Therefore it is also recommended that feature extraction is only used at the

leaf nodes otherwise the raw data has to be delivered through wireless communication

channels which will in turn drain the battery of the sensor nodes quickly.

The network setup process is performed sequentially per level of the satisfied sensing

mission and in parallel per children. E.g. in Figure 3.9 after the root node finished

setup it will notify both children which are doing their setup in parallel. Denote that

by using the satisfied sensing mission created by the self-organization process, the sen-

sor ensemble will perform self-management insofar as it will open only the necessary

communication channels on each node of the containment hierarchy, as wells as perform

classification, sensor data acquisition and feature extraction if needed and deliver the

data gathered or processed to the upper level in the hierarchy, where it is processed

further.
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Figure 3.9: Network setup

As the network setup is top down, it has the advantage that in a sensor ensemble which

is distributed over many hops, the communication routes from the root node to the leaf

nodes are set-upped with the top down traversal of the satisfied sensing mission, and

this routes can then be used to fetch additional information relevant for the sensing

mission – e.g. classification models – from the inquirer.

3.5.1 Recognition chain

Once the network setup is completed the activity recognition can start. The recognition

chain defines the way the data flows from input to output and what tasks have to be

done with that data. In DarSens the data flow is bottom up. Therefore our input are

the physical sensors of the sensor nodes assigned to the leaf nodes. Based upon the

task specified in a given leaf node the data may be fed into the feature extraction chain

afterwards in a local classification process and then sent to sensor node assigned to the

ancestors node for further processing until the data reaches the root node and the final

recognition result will be sent towards the requester. Denote that it is also possible to

omit any processing at a node, e.g cf. the chest node in Figure 3.9.

3.6 Self-adaptation

A self-organizing system needs to adapt to changes in the environment [6]. In the case

of a sensor system, changes in the environment mean the leaving and joining of sensor

nodes, which can happen quite easily in a wireless sensor network. This may happen

due to segmentation faults, drained batteries or any other kind of errors. However

it is essential that in an activity recognition scenario the data flow continues because
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Figure 3.10: Detected error in a sensing mission

only the continuous availability of this data enables context aware applications to be

successful.

Therefore DarSens implements a self-adaptation behaviour, which mitigates such

change, the disappearance of sensor nodes, by reusing the self-organization technique.

When a sensing mission is deployed all sensor nodes execute the tasks they got assigned

to. Now if a sensor node leaves the network, e.g. because his battery is drained, the

data generated – by the tasks previously executed – in that process is missing as input

for the tasks at the respective ancestor node. E.g cf. Figure 3.10 where the tasks at

the node hip needs input from node right and left hip. Whereas the tasks of left hip

and hip are both executed on the sensor node 6 and the tasks of right hip are executed

on the sensor node 7.

Now if a failure occurs at sensor node 7, cf. Figure 3.10, the data generated by it

is missing as input at the hip node. There are three strategies to recover from this

failure:

1. notification - notify its children to continue delivering information

2. recreation - create a sub-sensing mission for the failed part of the sensing mission

3. termination - notify its ancestors to terminate the satisfied sensing mission

3.6.1 Notification

The first strategy to recover from a sensor node failure, is that the sensor node which

detected the failure notifies the sensor, which failed to deliver data. The behaviour to
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Figure 3.11: Notification

do so is as follows: The sensor node which detected the failure will take the satisfied

sensing mission, which it received to start the activity recognition process, and extract

the part of the hierarchy where the failed node is the root node of and create a no-

tification, cf. Figure 3.11, which is in fact the same type of notification, that is used

to start the activity recognition process by the requester of sensing mission after the

self-organization phase. If the sensor node can successfully notify the failed sensor, the

activity recognition process will again be started on the later node and the data will

again be gathered an processed.

3.6.2 Recreation

However, if the notification is not successful after a few reties, the sensor node will

assume that the other sensor node is permanently lost and try to replace it by using

another sensor node with the same capabilities. It will – just like in the notification case

– again use the satisfied sensing mission which started the activity recognition process,

extract the part of the containment hierarchy where the failed node is the root node of

and remove the MAC addresses assigned to all the nodes including and below the node

which failed to deliver data and in turn create a respective sub sensing mission, which

will then be broadcast to the network. Now like in Figure 3.12 a sensor node, in our

case the sensor node with MAC address 13, will receive this sub sensing mission and

satisfy it. It will respond to the sensor node 6, which will in turn integrate the satisfied

sub sensing mission into the global sensing mission and hence replace the failed part

with it. Then it will notify the sensor node with MAC address 13, which starts the

network setup and again the data will be gathered and processed.
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Figure 3.12: Recreation

3.6.3 Termination

If both strategies, notification and recreation, to recover from an error fail the sensor

node, which detected the failure, will report to his ancestors and remaining children to

terminate the sensing mission. Those in turn will relay this termination request to their

children and ancestors until this notification reaches the leaf nodes on the one hand

and the requester of the sensing mission on the other hand. The requester will have

to deal with the terminated sensing mission either by re-notification, requesting the

sensing mission anew or by choosing another sensing mission which provides the same

activity information as the previous one with another set of nodes in the containment

hierarchy. E.g. if the requester was running a sensing mission on the left leg which

detects locomotion activity and part of the sensors run out of battery running an

equivalent sensing mission on the right leg would be a good solution.

Denote that in the examples described, only single node failure was mentioned. However

the system can also deal with the failure of multiple nodes at once because for the node

that detected the failure only the failure at the root node of that sub tree is visible

and hence even if the sensor nodes of the whole sub tree aren’t available any more for

the node who detected the failure only the failure at the root node is visible the rest is

hidden because of the structure of the containment hierarchy.

One case, which has been omitted so far, is the behaviour of children of a node in

the containment hierarchy. If the sensor node, which failed, isn’t reachable any more

they will assume that the data they gather and process is not needed any longer and

terminate the activity recognition process and notify their children to stop the activity

recognition process as well. This behaviour is also applied if the requester of a sensing
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mission fails or disappears. The root node will notify its children and they in turn their

children and the data flow will stop.

3.7 Conclusion

This chapter presented DarSens , an approach for sensing goal initiated multi-sensor

activity recognition, which yields the benefit that the sensing goal can be changed at

runtime unlike in traditional systems, as presented in the related work, where this

change has to happen at compile time. This goal oriented approach enables us to

detach the link between the activity recognition process and the types and amount of

sensors used, as multiple sensing missions with varying sensor resources can be used

for recognizing the same activities.

Furthermore through using the sensing mission and their containment hierarchy, the

creation of a sensor ensemble is only constrained by the data which needs to be gathered

from the different body positions and not by MAC addresses of the sensors involved as

seen in traditional multi-sensor systems.

Each sensor node can communicate with its environment, state its capabilities and

define what is needed from others to fulfil a sensing mission. This behaviour enables

the sensor nodes to self-organize themselves and self-manage the sensor ensemble, open

communication channels and deliver data from the sensors to the inquirer of a sensing

mission.

As changes, disappearing and joining of sensor nodes, may happen spontaneously in a

wireless sensor network DarSens reuses the self-organization approach, which created

the sensor ensemble in the first place to mitigate this change and self-adapt, e.g. by

replacing a disappeared sensor node with a sensor node with the same capabilities,

without disturbing the activity recognition.

3.8 Technology

For the implementation of DarSens the Sun Microsystems Small Programmable Object

Technology (SPOT) platform was chosen. It incorporates a system on a chip design

which includes a ARM920T ARM Thumb Processor clocked at a maximum speed of

180 MHz. As for memory the Spot contains a 4 MB NOR Flash memory and 512 KB

RAM whereas parts of the flash are occupied by the bootloader, the virtual machine,

some libraries and user applications.
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(a) Scheme (b) Photo

Figure 3.13: Sun SPOT

For communication with the outside world the Sun Spot features 8 tri-color leds, type

B USB mini connectors, a few general purpose input/output (GPIO) pins which can be

used to extend the Sun Spot with additional hardware and a IEEE 802.15.4 compliant

wireless radio chip.

The Sun Spot also features a temperature, light and acceleration sensor. The later is

heavily used in DarSens as it is the main source of information for activity recognition.

Additionally two buttons are located at the top side of the Sun Spot which can be used

for user input.

The Sun SPOT includes an Software Development Kit (SDK) to implement own ap-

plications for the Sun SPOT platform. Software for the Sun Spot is written in the

Java Programming Language, to be more precise in the Java Mobile Edition which is

a subset of the standard Java Language. The complete software is available under an

open source license as well as the hardware schematics.
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Chapter 4

Architecture

The implementation of DarSens features a multi layered architecture, cf. Figure 4.1,

which consists of several services. The lowest layer consists of two services, to be specific

a sensor and communication service, which are closely coupled to the hardware. As

the one access the acceleration sensor of the Sun SPOT and the other accesses the

wireless communication facilities. On top of it are the core services of DarSens which

heavily use those hardware coupled services, namely interaction, messaging, feature

and classification service. The behaviour of all services can be adjusted by using a

configuration class.

Hardware

Classification

Features

Messages

Interaction

Communication

C
on

fig
ur

at
io

n

Sensors

Figure 4.1: Software architecture of DarSens
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Figure 4.2: Service UML diagramm of DarSens

4.1 Services

At the core of the DarSens framework, cf. Figure 4.2 lies the Service class, cf. Fig-

ure 4.3. With this class one can access any service running, the MAC address of the spot

it is running on, the containment hierarchy which describes where the spot is placed on

– aka “bodyPart” it is located on –, the configuration or behaviour used to customize

this spot and finally access the LED of the Sun Spot for debugging/information pur-

poses. The service class glues together all layers of the architecture, cf. Figure 4.1

and is used by all services to accesses the other service or facilities of the framework.

Denote that this is an abstract class and has to be customized for usage. There is a

implementation for Sun Spot base stations and for regular Sun Spots because e.g. the

base station doesn’t have LEDs, or an accelerometer and it doesn’t need to run sensor,

interaction, feature, classification or message service.

In the following all services, which are grouped into different packages with their closely

related classes, of the framework will be described.
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Figure 4.3: UML diagram of the Service class

Figure 4.4: UML diagram of CommunicationService and closely related classes
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4.1.1 Communication Service

The CommunicationService, cf. Figure 4.4, handles communication. It can and should

be used by using the Services class, cf. Figure 4.5 class it also implements the ISer-

vice Interface from the Sun SPOT API. This can be used for life-cycle management of

services, for further details see http://www.sunspotworld.com/docs/javadoc/com/

sun/spot/service/IService.html. It maintains two receiving channels, one to re-

ceive broadcast messages and the other to receive direct messages. Additionally it will

open connections to other sensor nodes, if needed by other services, and close and clean

up those connection after some time.

4.1.1.1 Receiving

For incoming connections the CommunicationService uses two different classes. For

receiving broadcast messages, the BroadcastReceiver class is used, and for receiving

messages directed to the sensor node, the PointToPointReceiver class is used. Both

classes implement the Thread class and are hence used as Threads.

Those two classes will receive Datagrams from the physical connection. They are cre-

ating inherited instances of the Message class. The Message class bundles information

common to every message sent and received: a broadcast flag, the sender address, the

receiver address and the message type. Basically this is the header information for the

messages used within the framework. Every implementing class of the Message class will

have a different message type and hence the BroadcastReceiver and PointToPointRe-

ceiver can distinguish those messages. Those classes all implement the fromDatagram

method of the Message Class to read the contents of the datagram and store the re-

trieved data in the corresponding fields. This is basically a payload evaluation.

After the PointToPointReceiver or BroadcastReceiver class read in the content of the

datagram and evaluated its content, they will call the receivedMessage method in the

CommunicationService. This method will trigger “pre-receive” behaviour, queuing of

the message and “post-receive” behaviour. An example of pre-receive behaviour would

be to stop messages from being queued, e.g. a sensor node may not participate in

self-organization, like a mobile phone and hence will not be interested to process this

kind of messages. An example for post-receive behaviour would be logging “message

received and queued”.

The method receivedMessage in the CommunicationService will also notify the thread

which is responsible for processing the message queue. This thread will in turn try

to empty the message queue and notify all MessageListeners registered at the Com-

http://www.sunspotworld.com/docs/javadoc/com/sun/spot/service/IService.html
http://www.sunspotworld.com/docs/javadoc/com/sun/spot/service/IService.html
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(a) Services, Message, MessageListener and Behaviour
class/interface

(b) Command class

Figure 4.5: UML diagrams of Services, Message, MessageListener and Behaviour
class/interface and an implementation of the Message class: Command class

muncationService, e.g. the sensor service. The MessageListener interface consists of

two methods: fireMessage, which will be used to process the received message and fire-

Timeout which will be called when the delivery of a message fails. This is necessary for

e.g. termination of a running sensing mission when the parent node in the containment

hierarchy about to receive data is not reachable any more.

4.1.1.2 Sending

A connection class bundles all necessary information about an outgoing connection.

It contains the remote address and port, a dirty flag, a cleanUpAllowed flag and the

“physical“ connection itself. The dirty flag and the cleanUpAllowed flag are used within

the CommunicationService to handle the connection management. For each connection

the CommunicationService will evaluate periodically if this connection is still in use by

setting the dirty flag of the connection to true. In the next cycle if the connection is still

marked dirty it will close the connection. However if this connection is used the dirty

flag will be set to false by its user and the connection will not be closed. Alternatively

if the cleanUpAllowed flag is set to false for a Connection class it cannot be closed by

the communication service.

Additionally there are three types of outgoing connections available. A broadcast con-

nection and two types of direct connections. One direct connection for datagram based

communication, which is used for normal messages based on the Message class. The
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second type of direct connection is a stream based communication which is used for

sending data too large for a single datagram. This is e.g. used for fetching classification

model for a sensing mission.

4.1.2 Sensor Service

The sensor service is able to extract data from the acceleration sensors and either

relay it to a remote listener – e.g. for visualisation – feed it into the recognition chain

by using the local feature service or a remote one or store it into the flash memory.

The later method is needed for recording training data, which can later be used to

create classification models because its is not possible to transmit the gathered data at

high frequency to a remote location, because of the bandwidth restriction of the IEEE

802.15.4 standard.

The Sensor Service is closely coupled to the hardware and can be started by attaching

listeners to the data it is able to gather. Basically either by adding a SensorDataL-

istener, like the FeatureService does, or by specifying the MAC Address of a remote

receiver. In both cases the SensorData class is used to encapsulate the gathered data,

at a given time point, and deliver it to the requester.

Additionally using the Command class, cf. Figure 4.5(b), with the following

commands: SEND RAWDATA, STOP RAWDATA, RECORD RAWDATA, STO-

PREC RAWDATA, RETRIEVE RAWDATA, ERASE RAWDATA, one can in-

voke several functions of the Sensor Service directly. SEND RAWDATA and

STOP RAWDATA are used for retrieving and stop retrieving raw data. The raw

sensor data retrieved can be visualised using the DarSens EKG Application, cf.

Figure A.4. Further more using RECORD RAWDATA, STOPREC RAWDATA,

RETRIEVE RAWDATA, ERASE RAWDATA one can accesses the capabilities of the

Sensor Service to access the flash storage of the sensor node. The first two commands

work similar as SEND RAWDATA and STOP RAWDATA but the data is transferred

into the flash memory using the toFlashString() method of the SensorData class,

whereas one line in the flash storage represents one sample point in time. Using the

RETRIEVE RAWDATA command the data can be retrieved and it will be printed

out to standard output (stdout). For further processing it is recommended to redirect

stdout into a file when the sensor node is connected via USB to a computer. After

retrieval the data in the flash storage can and should be erased to free up the space.

Currently a little less than 10 minutes of data can be recorded using a sampling

frequency of 20Hz which is sufficient for activity recognition according to [25].
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Figure 4.6: UML diagram of SensorService and closely related classes

4.1.3 Interaction Service

The interaction service, cf. Figure 4.7 is used within DarSens to implement the self-

organization phase. It will receive and evaluate sensing missions and try to satisfy

them either solely or by the help of other sensor nodes and respond to the respective

requester.

The Interaction Service will add itself as a MessageListener at the communication ser-

vice. Hence for any message received by the communication service the fireMessage()

method is called for the interaction service which in turn will evaluate the message type

and contents. The interaction service will only process messages of the following types:

InteractionTree and InteractionDiffNumber. Both are used for the self-organization

process presented in section 3.4. An incoming InteractionTree message contains the con-

tainment hierarchy of the sensing mission, cf. Figure 4.7 bodyPart, an unique identifier

and a type identifier, which can be one of the following: REQUEST CAPABILITIES,

RESPONSE CAPABILITIES SEND CAPABILITIES, ECHO CAPABILITIES, AC-

QUIRE ACTIVITY, DISPOSE ACTIVITY, DATA SOON. Whereas the latter three

are used solely within the MessageService.

When broadcasting a sensing mission the InteractionTree message’s type identifier is

REQUEST CAPABILITIES. Upon arrival of such a message the InteractionService

will check if there is an overlap between the local containment hierarchy, representing

the position of the sensor node on the body, which is stored in the Services class, and

the incoming containment hierarchy. If both hierarchies don’t overlap nothing will

happen but if an overlap exits the difference number will be calculated and based on

the difference in nodes the InteractionService proceeds differently.
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Figure 4.7: UML diagram of InteractionService and closely related classes

difference of zero the interaction service will create an InteractionTree message based

upon the received message with type RESPONSE CAPABILITIES and same

containment hierarchy but with his MAC-Address assigned to all nodes. This is

the implementation of the concept satisfied sensing mission.

difference of one the interaction service will create an InteractionTree message based

upon the difference tree between the local and received containment hierarchy

with type identifier REQUEST CAPABILITIES and a new unique id. The differ-

ence tree and the requested tree will be stored in an InteractionPackage’s diffTree

and requestTree respectively, along with the id and the MAC address of the re-

quester. Furthermore a TreeTimerTask will be created which in turn will stop

the self-organization process for this received sensing mission if it can’t be sat-

isfied after a certain time by receiving a InteractionTree message containing the

difference tree with containing a MAC-Address at every node and the type RE-

SPONSE CAPABILITIES.

difference greater than one the interaction service will store the same data in an In-

teractionPackage, like the previous case. However he will start a master selection

by sending out an InteractionDiffNumber with the difference number and ad-

ditional random number and its sibling name. Denote that the siblings names

are the node names after the first fork after the node, for which a master is to

be elected, cf. Figure 4.8. This InteractionDiffNumber message will be broad-

cast and the InteractionDiffNumber messages of other nodes will be received and

compared to the local information. If one of the other sensor nodes has a lower

difference number and optional random number in case of equality the master

selection process will stop as it continued on the other sensor node. On the other
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(a) sibling names for the master selection at the root
node: left leg, right leg

human
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(b) sibling names for the master selection
at the root node: u-arm, forearm, hand

Figure 4.8: InteractionDiffNumber - siblings name explained

hand when the sensor node received a InteractionDiffNumber message from all

siblings (which are stored in the InteractionPackage’s siblings field) and it has

definitely the highest number, it will elect itself as master. Alternatively because

all InteractionDiffNumber messages are broadcasts it may happen that the sen-

sor node doesn’t receive a message from siblings or because the siblings are to

far away to have received the original request it will elected itself automatically

as master after a certain period this behaviour is implemented through the Diff-

TimerTask. After the election as master it will REQUEST CAPABILITIES for

the difference tree just like in the previous case.

4.1.4 Message Service

The message service is used to implement the setup of the network, the activity recogni-

tion process and the delivery of data within the running sensing mission. Upon receiving

a InteractionTree message of type ACQUIRE ACTIVITY the MessageService will use

the information – id, sender mac and containment hierarchy, which equates to the sat-

isfied sensing mission – in the message to setup a MessageBuffer object for this sensing

mission. In turn the MessageService will schedule the execution of two periodic tasks,

namely startTree and sendData.

The former method will setup the local processing by invoking the recursive function

createBuffers. It does the following for each node in the containment hierarchy, with

MAC address assigned:

• add a buffer within the MessageBuffer
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Figure 4.9: UML diagram of Message Service and closely related classes
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• create a DataMessage object, its data field will later and periodically be filled by

the activity recognition chain running on this node and sent by the MessageService

• invoke setupLocalProcessing(), which fetches the classification model and feature

matrix from the requester if needed; Denote through the size of the data to be

transmitted a StreamConnection will be opened, the data will be fetched and the

connection will be closed. To control and implement this behaviour the Blueprint

class is used which exactly specifies what is needed from the remote side.

Using the classification model and feature matrix obtained their respective service

will be invoked to start the processing or creation of data

When the recursive traversal of the createBuffers hits a node, which is not assigned to

this nodes MAC address, it will notify the node by sending an InteractionTree message

of type ACQUIRE ACTIVITY and terminate further traversal as this is done on the

other node.

The later method, sendData, will simply send all DataMessages created by the start-

Tree method. Furthermore the method will also fetch and remove data from the Mes-

sageBuffer prepare the data for the classification service by invoking dataToHashtable

function and update the data the classification services operates on.

4.1.4.1 MessageBuffer

The MessageBuffer class holds all information belonging to a deployed sensing mission.

For every node in the sensing mission with a MAC address assigned to this node a Buffer

exists with a fixed size. If the buffer is filled faster then the data can be processed and

removed, the oldest data is removed without processing. This ensures that the buffer

will not be filled till the device is out of memory and also keeps the data “fresh”. If

on the other hand the data is processed and removed faster then the buffer can be

filled a MessageBufferError will be created. Denote that the buffer will not remove

the last element to insure that the processing can continue. However after a certain

amount of continuous errors the MessageBuffer will fire a DataTimeOutListener event

and notify the MessageService. This error notification contains all necessary informa-

tion for further processing of the error, namely the place in the containment hierarchy,

of the sensing mission where the error occurred and the MAC Address from the physi-

cal sensor node, which is not delivering the information. The MessageService uses this

information to start the self-adaptation behaviour.

In case of a notification the MessageService will create a InteractionTree Message with

type ACQUIRE ACTIVITY similar to the one in the createBuffers method. If this
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Figure 4.10: UML diagram of FeatureService and closly related classes

message is received by another node it will either start the setup behaviour described

earlier – e.g. because the node rebooted because of an system error and has lost all

runtime information – or reply with a InteractionTree Message with type DATA SOON

stating the setup is complete and that data will soon be available. This DATA SOON

message will reset the error count in order to stop the self-adaptation behaviour.

If the sensor node is not able to send a message to the sensor node in question because

there is no route to the sensor node (network layer) the Sun Spot framework will throw

an appropriate exception and the self-adaptation behaviour will stop trying to notify the

node and instead start a self-organization process for the failed part of the containment

hierarchy. If the self-organization process is successful the MessageBuffer for the failed

node will be updated removing the old data provider and instead adding the new data

provider – the responder of the self-organization process. If the self-organization process

fails continuously – for a few times – then the error can not be recovered at all and the

sensor node will send an InteractionTree Message with type DISPOSE ACTIVITY to

the root node of the sensing mission and stop the local processing and notifying the

sensor node’s own children in the containment hierarchy of the failed sensing mission.

4.1.5 Feature Service

The feature service is able to process raw acceleration data and calculate the follow-

ing features standard deviation, energy, mean, mean crossing rate, zero crossing rate,
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Table 4.1: String representation of a feature matrix

variance, root mean square and fluctuation for each axis separately. Those features are

considered relevant features for activity recognition and were used in previous research

[25]. As that there is a dependency between those features so in order to calculate

e.g. mean crossing rate also mean has to be calculated, cf. the aggregations in Figure

4.11.

The FeatureService is started using the createFeatures method – invoked by the message

service – which takes as an argument the textual representation of the feature matrix,

an example can be seen in table 4.1, denote that the legend and white space is not

part of the actual representation. The matrix will be translated into three arrays one

for each line/axis. A 0 disables the computation of a feature a 1 enables it and the

index in the matrix corresponds to the id of the feature. Based on the containment

hierarchy the MessageService will either add a local or remote output. When new data

is available the SensorService will notify the FeatureService using the fireData function.

The FeatureService will in turn update the data and compute the features anew and

additionally relay the computed features towards all local and remote targets.

4.1.5.1 Features, DataFeature, . . .

Every feature has a unique id, which is used for internal representation, a feature name

and stores calculated feature values. The feature interface provides getters for a com-

mon access pattern to any feature. Denote that all features currently operate on a

sampling window. Therefore they share the same original data set for their computa-

tion, implemented within the DataFeature class. The DataFeature class stores a data

array of the sampling window size. When data is pushed into a DataFeature it will

notify all BeforeAfterShiftListener’s using the beforeShift method. Then shift the data

array by one index, removing the oldest element and in turn add the new data at the

end of the array. This is e.g. useful for features that use a sum computation, removing
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Figure 4.11: UML diagram of Features and closly related classes

the value of the first element before the shift and adding the newest element to the sum

after the shift instead of iterating over summing up all values anew at each time when

a new value appears.

4.1.6 Classification Service

The classification service is responsible for classification and filtering of data. The

classification service’s startClassification method will be invoked by the message service.

Using the id, level and node name and a classification model. The classification service

first parses the model’s internal representation and creating a classifier out of it, which

in turn will be used to create a classification task. The classification task will use the

latest features/data to classify and in turn periodically update the data to be sent by

the MessageService, namely the DataMessage’s data field. This ensures that the data

to be sent will be the newest data available.

Filter and FilterTask work in a similar fashion the only filter currently implemented is

a pass through filter, which doesn’t filter anything yet. More useful filter are an open

issue and could be implemented in further work.

4.1.6.1 J48 Classifier

The only classifier currently implemented is the J48 classifier. J48 has been found one of

the most efficient classifiers for activity recognition from accelerometer data according

to [30]. Its textual representation can be stored and used to transfer the classification

model to a sensor node. The implementation consists of a model class J48 and a tree
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Figure 4.12: UML diagram of ClassificationService and closly related classes
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node class J48Node. The model class holds the model based on tree nodes and the

classification function which uses a feature set as input.

The J48Node class represents a node in the tree consisting of the following:

name this is the name of the feature

value this is the decision boundary of the feature

smallerChild a J48Node to expand if the current feature value is smaller than the value

stored in this node

greaterChild a J48Node to expand if the current feature value is greater or equal than

the value stored in this node

If the J48Node has neither a smallerChild or a greaterChild its is a leaf node and has

a class label assigned.

The J48 classifier will classify, a new sample of features, by evaluating its model by

invoking the recursive function evaluate with the models root node and the new sample.

The recursive function will examine the features name at the current node and get the

appropriate value from the feature set. If the value is smaller than the value stored in

the J48Node it will expand and evaluate using the node’s smallerChild. If the value is

greater or equal than the node’s value the classifier will expand and evaluate using the

node’s greaterChild. This process is continued until the evaluation function finds a leaf

node and returns the class label attached to this node.

4.2 Framework

In Figure 4.13 a more detailed picture of the framework is presented than in 4.2. It

shows how everything fits together.
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Figure 4.13: UML diagram of DarSens
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Chapter 5

Evaluation

In order to evaluate the approach of DarSens three experiments have been conducted.

The first experiment examines the self-organization phase and how long it takes the

sensor nodes within a network to satisfy a sensing mission. The second experiment

looks at different system properties when using DarSens in an activity recognition

scenario. The third experiment shows that the system can self-adapt to changes in the

sensor network. These experiments also provide proof for the hypotheses stated in the

introduction.
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Figure 5.1: Sensing mission(s) used for self-organization

5.1 Self-organization

In order to start a recognition process sensors need to interact, more precisely self-

organize. A “requester” will broadcast a sensing mission and the sensors will try to

satisfy it either solo or together. The following parts of the hypotheses are to be proven

with this experiment:

a) The asserted benefit of using a sensing goal initiated multi-sensor activity recognition

approach is that such a system is capable of recognizing different sets of activities at

runtime by only changing the recognition goal which corresponds to changing the used

sensing mission. Therefore its necessary to proof that a sensor network can self-organize

itself for different sensing missions without recompiling.

b) To avouch that a sensor is able to communicate and interact with its environment

and specify what ’duties’ are needed from others, and what it can do itself, we specify

sensing missions which are unable to be satisfied by a single sensor node, but only by

cooperation of sensor nodes.

5.1.1 Experiment setup

A total of six Sun Spots where randomly placed on a 30cm2 area. Every sensor had

a distinguished position on the body assigned to it, cf. the leaf nodes in Figure 5.1.1.

A base station was attached to a computer running a version of the DarSens EKG, cf

Appendix A, which was used to measure the time needed for self-organization. The

measurement was started when the sensing mission was broadcasted to the network

and the time difference was calculated for each returned satisfied sensing mission.

Different types of sensing missions were used to test the time needed for self-

organization. The sensing missions are based on three different types of sensing mis-
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S1 S2 S3 S1S2 S1S3 S2S3 S1S2S3

leaf nodes/number of sensor nodes 1 2 3 3 4 5 6
total number of nodes 3 5 5 7 7 9 11

tree height 3 4 3 4 3 4 4
master selection no no yes yes yes yes yes

Table 5.1: Self-organization sensing missions properties

sions: S1, S2, S3, cf. Figure 5.1.1 dashed line and composition of them, summing up

to a total of seven different sensing missions. These sensing missions differ in the total

number of sensor nodes used, the height of the tree, the total number of nodes and if a

master selection will take place during the self-organization phase, cf. Table 5.1 for an

overview of the properties.

5.1.2 Experiment implementation and conclusion

With the start of the broadcast of the respective sensing mission, the time measure-

ment started and, upon receiving respective responses of the sensor network, the time

difference was calculated. Denote, that for almost every broadcast of a sensing mission

multiple valid responses were received, if the sensing mission contained more than one

leaf node. However only the first response were used for our plots. The experiment was

repeated ten times for every sensing mission.

The resulting time for the completion of the self-organization process for the different

sensing missions are presented in Figure 5.2(a) and 5.2(b). Figure 5.2(c) shows the time

needed for the self-organization process regarding to the number of leaf nodes, which

is also the number of physical sensor node participating in the sensing mission. Figure

5.2(d) on the other hand shows the time for self-organization with respect to the total

number of nodes in the sensing mission. Denote that in both figures the dashed line

represents the average time to complete the self-organization process.

It is clearly visible that if more sensor have to participate to satisfy a sensing mission,

the self-organization process takes longer to complete. This can be related to two facts.

First one is that the sensing mission is transmitted in textual form, hence “bigger”

sensing missions take longer to transmit and of course the parsing of the sensing missions

takes more time. Among other things by shortening the textual representation of the

sensing mission the results from the framework in [14] have been improved. The second

fact is that through the use of broadcasts, the error, introduced by them, has to be

mitigated. Unlike when using direct communication between two sensor nodes, when

using broadcast there is no reception guarantee. Hence messages broadcast can and

will be lost – which has been observed through the development of DarSens – and
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Figure 5.2: Self-organization experiment plots
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not be retransmitted unless the application developer takes care of it. As for the

interaction service, it will retransmitted certain requests if it doesn’t get a response in

time. However the self-organization process relies on broadcasts heavily, for requests of

sensing missions and sub-sensing missions, and especially for the master selection.

Furthermore as seen in Figure 5.2(a) and 5.2(c) there is big time increase between S2

and S3/2 or 3 leaf nodes. The reason for this behaviour is that in case of three nodes or

S3 a master selection takes place while in case of two nodes or S2 only one sub request

is created to satisfy the sensing mission. This is because there is a time-out within the

master selection process for receiving replies, which is between 300-400 ms.

Concluded one could argue that it would be more feasible to use a discovery approach

which would lead to an routing table so that its not necessary to rely on broadcasts.

However this would lead to a conflict with the requirement enforced by the idea of

opportunistic activity recognition namely that you will deal with a highly dynamic

environment. Hence sensor nodes will leave and join the network on a regular basis and

keeping routing tables updated would be a constant effort which will drain the battery of

the sensor nodes. So this dynamic approach with broadcasts may seem slower however

energy wise it will be more efficient as network organization will take place only on

demand and furthermore an application developer/framework user can use previously

satisfied sensing missions and use them to skip the self-organization phase entirely.

This even works if some of the sensors are not available any more because they will be

replaced using the self-adaptation technique.

As for the parts of the hypotheses to be proven: ad a) Has been affirmed successfully

because all different sensing missions were broadcasted and satisfied using the same

software version. ad b) Has been avouched successfully because we used sensing missions

with more than one sensor node involved e.g. S3.

5.2 Activity recognition

After self-organization is complete the activity recognition process can start. When

considering a typical activity recognition scenario there are trade-offs between different

requirements, which are mutually exclusive to some extend. Derived from previous

activity recognition projects in research, cf. Chapter 2 the following three requirements

are considered essential:

accuracy to which percentage is the system able to recognize a certain set of activities

correctly
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speed in term of set-up time

energy efficiency how much energy is consumed when performing an activity recogni-

tion task

The following parts of the hypotheses are to be proven with this experiment:

Using the self-organization principles the sensor ensemble can perform self-management

as it can satisfy a recognition goal and the corresponding sensing missions. Furthermore

the sensor ensemble will open communication channels and deliver data, process it and

send the recognized activity to the requesting peer. Hence it is necessary to use sensing

missions, which include more than one sensor node and where the data is processed on

more than one device.

5.2.1 Experiment setup

To show the feasibility of our approach, an artificial activity recognition scenario was

created with the following three types of activities to distinguish: standing, walking

and running and took a supervised learning approach.

A dataset of six minutes was recorded on four body positions, namely thigh and shank

on both legs, cf. Figure 5.3(a). Each activity was performed for one third of the dura-

tion, as outlined in Figure 5.3(b). The data was labelled with the activity performed

at that moment. Afterwards the following features were extracted from the dataset:

standard deviation, energy, mean, mean crossing rate, zero crossing rate, variance, root

mean square and fluctuation. This features have been also used in previous research

[25]. For each axis the raw data and the 8 computed features sum up to a total of

27 values per sample in the recording. In order to decrease the computational load

and the bandwidth needed for transmission only two of three axis were used. The axis

measuring forward and upward acceleration were found to be the most useful ones by

[9]. This leaves a total of 18 values per sample, which was further diminished by using a

“best-first-search” feature selection algorithm provided by the WEKA machine learning

toolkit [12]. Up to six features for both axis together were then used for training a

classifier. In this case, the J48 classifier, which has been found one of the most efficient

classifier for activity recognition from accelerometer data according to [30].

Every sensing mission may feature multiple classifiers. Classifier were trained for each of

the four body positions. In order to train meta classifiers, a meta dataset by combining

the output of the classifiers and the true label was created. This meta dataset was then

used to train another J48 classifier. E.g. for training the classifier of the leaf nodes in
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Figure 5.3: Activity recognition experiment sensor setup and recorded data

SSM1, cf. Figure 5.4(b), the recorded data set was used; for the classifier in left leg the

output of its corresponding child nodes were used – the leaf nodes: thigh and shank –

to create a meta data set and train the classifier.

5.2.2 Experiment implementation and conclusion

In order to show the usefulness of our approach in an activity recognition approach,

three sensing missions, cf. Figure 5.4 were choosen with different layouts. They do not

only differ in the layout but can also be intuitively be assigned to one of the typical

requirements of an activity recognition system. SSM3 would be the fastest and most

energy efficient. SSM2 would be the most accurate and SSM1 the good average. The

performance of the sensor network was measured while performing the same procedure

used for gathering the training data, namely walking, running and standing for two

minutes each. Denote that in all three sensing missions the features are calculated on

the leaf nodes and used as input vector for the classifier located on the same node. This

saves a lot of bandwidth because only one value, the classification output, has to be

transmitted instead of the up to 27 values produced by a feature service. As already

explained earlier the meta-classifiers of SSM1 and SSM2 use the classification output

of their respective child nodes as input and classify correspondingly. Denote that in

Figure 5.4 exemplary satisfied sensing missions are shown. The numbers symbolize the

MAC-Address of a certain sensor node and show that the tasks of multiple nodes are

executed on the same physical device. Which in turn concludes that the data flow

bottom up will not always be transmitted wireless, cf. Figure 5.4 dotted line, but be



Evaluation 63

transmitted locally, e.g. in SSM2 from the node “left leg” to “human” node. The size of

the local transmitted data will not be added to the communication effort in table 5.2

as it does not consume transmission power to transfer it. Furthermore any type of data

produced in the activity recognition process (raw- , feature extraction- , classification-

data) which contains the same information as the previously produced one will not be

transmitted at all in order to save bandwidth and power needed for the transmission.

In order to avoid the triggering of self-adaptation behaviour on the ancestor node, the

same data will be transmitted after some time. Denote that DarSens not only samples

with a frequency of 20 Hz but also transmits data with this frequency, which is a good

value as shown by research conducted by[25]. [25] identified that the sampling frequency

from acceleration data of a human subject stabilizes between 15 and 20 Hz, meaning

a higher sampling frequency will not yield more significance in relation to the activity

recognition task.

The results of the experiments are shown in Table 5.4. Denote that the number of

nodes in the sensing mission is always the same as the number of wireless connections

needed. As accuracy’s concerned the table presents both the accuracy calculated by the

WEKA toolkit on the training set and the accuracy of the sensor system when doing

the experiment.

It can be seen that there is a significant drop in accuracy between those two across

all sensing missions. Possible causes are amongst others an accuracy drop due to

displacement – previous research [21] showed that the drop can be as high as 72% and

the training data set may be too small and hence the classifiers are overfitting. The

later problem could of course be mitigated by obtaining more training data, however

this would improve only the accuracy – and not change the systems behaviour – and is

not the focus of this experiment.

When a sensing mission is deployed, it takes some time for the first activity information

to reach the requester, due to processing delay and the time needed to set-up the tasks

for the nodes in the containment hierarchy in the sensing mission. E.g. there is a two

seconds delay before a sensor node will fetch a classification model or feature matrix

from the requester. The time difference is referred to as time to data in Table 5.4.

Denote that the fetching a classification model and a feature matrix will be performed

in parallel within a level in the hierarchy and sequentially per level. Therefore the delay

increases only slightly when the hierarchy is deeper or more complex, cf. time to data

from SSM1 and SSM3.

Interestingly the total amount of data to be communicated wireless through the network

scales very well with the amount of sensor nodes used. E.g. SSM1 has 35 KB having

only one node and one wireless link and SSM2 has the double amount of wireless links
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Figure 5.4: Exemplary satisfied sensing missions with marked wireless connections

and physical nodes and amount of data is doubled as well. When looking at SSM2, it

would be expected that the amount of data to be transmitted be not only doubled but

is thrice as high as SSM1 because the containment hierarchy is a mirror image of SSM1

and there are two more inter-system connection links. However through sending only

the classification output and not sending the same data all the time the communication

effort can be greatly reduced.

As far as energy consumption is concerned the results are not very accurate, because

the Sun Spot API only delivers a very raw estimation of the real value. However the

layout of the containment hierarchy of the sensing missions number doesn’t significantly

influence the power consumption when looking at a single node, of course the overall

consumption throughout all sensor nodes is higher. This can be traced back to scala-

bility of the approach in terms of communication effort. Because the main power draw

of such systems is the wireless communication facility and reducing the communication

effort also reduced, in turn, the power consumption.

In total, the experiment has confirmed the intuition previously described: SSM3 is the

fastest in terms of set-up time and self-organization time. SSM2 the most accurate and

SSM1 the good average. While exploring which types of sensing mission to use, also a

sensing mission similar to the layout of SSM1was used but with no local classification on

the leaf nodes and combining the feature values at the left leg node classifier. However

the amount of data to be transmitted was to high. The network could not handle the

load and the output buffer of the sensor node filled and rendered the sensor node useless

and in turn the whole system broke down.

As for the part of the hypotheses, it has been proven successful as the sensor network is

able to ensemble itself into three different sensing ensembles (SSM1, SSM2 and SSM3),
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tree SSM1 SSM2 SSM3

number of nodes 2 4 1
wireless connections 2 4 1
LIVE accuracy (%) 79 85 73
WEKA accuracy (%) 98.5 99.3 97.8
self-org. time (ms) 518 2395 75
time to data (ms) 2422 3132 2162
memory usage (KB) up to 350 363 309
comm (KB) 75 150 35
energy consumption (%) 1 − 2 1 − 2 1

Table 5.2: Comparison of different sensing missions

which can collect data and send them to the other sensor nodes for further processing

and recognize the specified activities.

5.3 Self-Adaptation

When an activity recognition process is running in the wireless sensor network, it can be

disturbed because single sensor nodes may disappear because of faults, e.g. battery ran

out. Therefore it is necessary, that the sensor ensemble can deal with such problems.

The following parts of the hypotheses are to be proven:

a) Run-time operation of goal driven sensing ensembles can be protected using the self-

organization technique against spontaneous and occasional sensor faults. Therefore we

let a sensor ensemble perform a recognition task and simulate the disappearance and

joining of sensor nodes by turning them off and on again, expecting that the activity

recognition will continue and the sensor node will be reintegrated.

b) To affirm that the configuration of the sensor ensemble is derived by the sensing

mission and only constrained by the body positions and not by a MAC address, a

sensing mission’s containment hierarchy only specifies which body parts data needs to

be gathered from. When a sensor ensemble is performing a recognition task we replace

a sensor node at a given body position with another sensor node with the same body

position assigned to it, expecting again that the activity recognition will be continued

and the new sensor node be integrated in the sensor ensemble.
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Figure 5.5: sensing mission

5.3.1 Experiment setup

The sensing mission, cf. Figure 5.5 was used to self-organize the sensor network and

setup the activity recognition process. Denote that the sensor network consisted of 7

sensor nodes whereas two had the same body position assigned to them, to be precise

the sensor node for the hand position had a backup sensor node.

5.3.2 Experiment implementation and conclusion

In order to show that the self-adaptation worked when running the activity recognition

process for the strategy notification, the sensor nodes “hand” was restarted loosing all

run-time information, including its knowledge of being part of the sensor ensemble

running in the network. The sensor node assigned to the containment hierarchy node

right arm detected the missing of information from hand and notified the sensor node

accordingly using its MAC address. Upon receiving the notification the sensor node

hand joined the sensor ensemble once more and delivered data again. The timespan

from sending the notification until receiving the first data packet was measured 10 times

and can be seen in, cf. Figure 5.6(a). The same procedure was applied for the sensor

node assigned to “right arm”, meaning the whole sub-tree S3 had to be notified to

continue delivering information. This was also performed for the sensor node assigned

to the root node of the containment hierarchy.

The self-adaptation strategy recreation was validated in a similar way, but unlike in

the notification case, we did not restart the sensor nodes but replaced them by sensor

nodes with the same body positions assigned to them. Therefore in the first case of

the failed leaf node “hand”, the node couldn’t be notified and the sensor node assigned

to the containment hierarchy’s node right hand started a self-organization process for

the failed network part. As we had a backup node in place, this sensor node satisfied

the sensing mission for the failed part of the network and joined the sensor ensemble
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Figure 5.6: Timings for self-adaptation

in turn. The time measured in figure 5.6(b) is the time it took for the self-organization

process to complete and the first data from the replaced part to be received. The same

procedure was repeated while the sensor node was also assigned to the right arm node

(submaster) and the root node where in those cases the self-adaptation had to replace

the S3 tree of the containment hierarchy and the whole sensing mission in the root

case.

As for the parts of the hypotheses to be proven: ad a) It was proven that using self-

organization techniques, a goal-driven opportunistic sensing ensemble can be protected

against temporary sensor faults (restarted case) and permanent (replaced) case. ad b)

The self-adaptation strategy recreation proved that the sensor ensemble only needs to

be constrained by the body position specified within the sensing mission as a sensor

node can be replaced by another sensor node with the same body position assigned to

it.

5.4 Summary

With the three experiments performed, all hypotheses have been confirmed:

• The system is able to change its sensing goal at runtime and therefore the system

can choose the sensors to perform an activity recognition task at runtime, based

on the available sensors.
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• The sensor system is only constrained by the sensing missions definition from

which body parts data needs to be gathered, unlike, in traditional sensor systems,

from which sensor.

• Each sensor node is able to communicate and interact with the environment

by specifying its needs and capabilities. This enables self-organization and self-

management because upon receiving a sensing mission the sensor node will try

to satisfy either by itself or with the help of other sensor nodes. Furthermore

communication channels will be opened and closed automatically based on the

necessity of the data to be delivered bottom up from the sensors to the receiver

of the recognition chain.

• A sensor ensemble is able to cope with the disappearance of sensor nodes, because

of sensor faults, without disturbing the activity recognition by either reintegrating

the same sensor if it reappeared or by replacing it entirely by a sensor with the

same capabilities.
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Chapter 6

Conclusion

In this thesis, DarSens, a concept, framework and the implementation for a distributed

activity recognition system/algorithm has been presented. The system is able to access

the capabilities of multiple sensor nodes, be it for data processing purpose or sensor

data acquisition and use it to perform activity recognition.

DarSens is able to make best use of available sensor nodes and orchestrates them into

an cooperative ensemble. The orchestration process takes into account the location

and spatial relation between sensor nodes which in turn leads to the benefit that data

to be transmitted will be sent to neighbours in close proximity first – which then will

lead to sub-activity-recognition – until it finally reaches a central coordination point,

to finalize the activity recognition, which in turn will deliver the outcome of such a

multi-layered context recognition process to a final destination, which could be any

application interested in context recognition.

In order to evaluate DarSens three experiment have been performed. The first ex-

periment assess the frameworks capabilities of self-organization from a independent

sensor network towards a coordinated cooperative activity recognition ensemble. The

second experiment appraises how the specification for coordination of such an activity

recognition process influences the systems performance in a typical activity recogni-

tion scenario. The third experiment shows how the system deals with sensor faults by

self-adaptation without disturbing the activity recognition process.

6.1 Future Work

Currently there are two limitation with DarSens. The framework relies upon the sensor

node knowing its position on the body it is attached to and induce the appropriate con-
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tainment hierarchy for this location. However this conclusion is not made dynamically

but is predefined and based on the MAC address of a sensor node. Although it can be

changed at runtime using the DarSens EKG, cf. Appendix A. To fix this problem the

best solution would be to integrate the approach to locate a sensor node on a human

body from [19].

The second limitation is that currently the system will only work in a single person

environment, where all sensor nodes are attached to the same person. Otherwise the

self-organization process may create a sensor ensembles that use sensor nodes from

different person and the recognition process would provide an application with wrong

data. In order to overcome this issue the approach taken by [23] could be used.

To further improve the feasibility of the framework for application developers some of

the task required to create a sensing mission should be automated.

• online-labeling facility while recording the data

• automatic retrieval of the recorded data of all sensor nodes wireless

• automatic feature extraction and feature selection

• automatic creation of multiple hierarchy linked classifier using the WEKA Toolkit

or components of it

• automatic creation of the sensing missions data files (classification model, feature

matricies, . . . )

Furthermore in order to improve the activity recognition process it would be interest-

ing to investigate the possibility of integrating user profiling. This would mean that

the wearer of the sensor system would have the ability of updating and adjusting the

classifier models while using it and in turn update the sensing mission for later usage.

This would be an interesting feature for application developers as they can create very

general models for the sensing missions that will work good in average over a lot of

people and an application user can in turn adept and perfect the sensing mission for

his own use.

A lot of activity recognition systems especially for long term monitoring work with

the activity in relation time, as the human is not only a creature of habit and will

perform the same activity either for a longer period in time but also e.g. at the same

time on different days. Furthermore our physiology constrains us in so far as we are

not able to change from one activity, we are performing, to another at will. There are
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transition phases which can be used to further improve the activity recognition. E.g.

it is unlikely for us to change from running to sitting without standing in between.

This likelihood of a transition between activity can be modelled with a Hidden Markov

Model (HMM). Therefore enhancing the system with such temporal models at any

node in the containment hierarchy would be an effective way to improve the activity

recognition performance.

Another possibility to further improve the system would be porting it to another hard-

ware platform and operating system. Emphasized by its event driven architecture,

TinyOS [10] would be a good alternative to the Sun Spot Platform used now. With

this switch it would also be interesting to investigate if its possible to create a real-time

system.

Another possibility would be to focus on a proper power management. Due to the

layout of the containment hierarchy, it is clear that only two layers have to be powered

on at a given time point in order to send and receive data. E.g. when the lowest

level (leaf nodes) powers on their antenna to sending data to the next level, also the

next layer will power on their radio for receiving this data. After reception the next

layer powers on their antenna to receive the data from the second layer and so forth.

Obviously this a very sophisticated synchronisation problem. However it would greatly

lower the power consumption and make the system able to use for long-term activity

recognition.
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Appendix A

DarSens EKG

The DarSens EKG is mainly a demo application, which acts as a testbed for testing the

different functions of the framework. It should be used to get a feeling for the concepts

of the framework and its implementation and how to create an application.
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A.1 Command

Using the command menu one can issue a lot of commands. e.g.

SEND INQUIRE REQUEST (this is a broadcast to inquire which sensor nodes

are out there, the list of sensor nodes will be shown in left side with their respective

MAC address), ECHO CAPABILITES (sends a direct message to a sensor node to

obain his containtment hierachy; its necessary to select a MAC address from the list of

sensor nodes beforehand)

Figure A.1: Commands menu

A.2 Interaction

The interaction menu can be used for testing self-organization, network setup and

activity recognition. E.g. to test self-organization one can use the selection box to

choose from predefined sensing missions, which upon selection are shown as a tree (the

left one). They can be broadcast using the send button. The response is then displayed

in the right tree. Denote that selecting a node there, will reveal the MAC address

assigned through the self-organization process.
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Figure A.2: Interaction/Self-Organization menu

A.3 Scenario

With the scenario menu one can reuse predefined satisfied sensing mission to start the

activity recognition process.

Figure A.3: Scenario menu
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A.4 Visualisation

Using the SEND RAWDATA command to a sensor node one can display the raw sensor

data gathered by the accelerometer sensor. The gathered data is then displayed upon

the graph panel.

Figure A.4: Visualisation of raw sensor data
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